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1. Introduction

Toric geometry studies a contemporary collection of combinatorially defined ob-
jects in algebraic geometry called toric varieties, first formally defined in the 1970’s
[CLS11]. In toric geometry, it is a foundational theorem that the categories of affine
normal toric varieties, convex rational polyhedral cones and toric monoids are all
equivalent. Recently, this was partially extended to an equivalence between the
categories of pointed toric monoids and extended convex rational polyhedral cones
[HMU19]. In this paper, we provide examples that extend these results further using
monoid schemes (or F1-scheme in some of the literature) from discrete geometry as a
construction to glue pointed toric monoids. In particular, we demonstrate a bijection
between morphism sets between non-affine monoid schemes and morphism sets of
extended fans. This is a first step towards potential future work that we anticipate
to be true: the category of extended convex rational polyhedral fans is equivalent to
the category of toric monoid schemes (i.e. monoid schemes glued affine locally using
toric pointed monoids).

2. Background

First we discuss preliminary ideas to lay down the foundations needed to discuss
locally monoidal spaces and extended fans in Section 3. The following is excerpted
from [HMU19].

2.1. Monoids. If a setM satisfies closure under an associative operation and has an
identity element, we call M a monoid. A a common example is the natural numbers,
denoted N, which we assume throughout to include it’s identity under addition 0.
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2 SEBASTIAN CALVO

An ideal of a monoid M is a (potentially empty) subset N ⊂ M that inherits the
operation of M and observes an absorbing structure. By this we mean for all n ∈ N
and m ∈M , m ·n ∈ N and n ·m ∈ N . An example of an ideal in N is the subset N+.

We call a proper ideal p prime in M if for m ·n ∈ p, then m ∈ p or n ∈ p. The prime
spectrum of a monoid is the set of all prime ideals in M .

For a monoid M , it is not required for elements to have inverses in M . For example,
in N, 1 does not have an inverse. To fix this, we can invert the elements of any subset
that is closed under addition. Let N ⊂ M be a set that contains the identity and
is closed under addition. Then N−1M = M

î
1
n

ó
for n ∈ N . We call this localizing

at a set. Following the nomenclature of commutative algebra, when we say that we
localize a monoid M at a prime ideal p ⊂M , we invert the elements that are not in
p. So the localization of M at p is M [ 1

M−p ].

Our focus will be on toric monoids ; that is, monoids that are finitely generated,
saturated, cancellative and are torsion-free (see [HMU19, Section 2] or [CnHWW15,
Section 2] for standard background definitions in monoid theory). Toric monoids are
equivalently defined as monoids that embed as a saturated subset of a lattice or,
also equivalently, as subsets of a lattice produce by intersecting a lattice with a cone
(defined below). The natural numbers Nk for k a positive integer are an example
of toric monoids. In fact, they and their localizations will be the only kind of toric
monoids discussed in this paper.

2.2. Cones. To discuss cones, we must first introduce lattices. A lattice N is a free
abelian group of finite rank. A lattice of rank n is isomorphic to Zn. The dual lat-
tice M of N is defined as the lattice of the dual induced R-vector space, that is,
M = Hom(N,Z). Since both N,M are isomorphic to Zk, we may treat the inner
product of n ∈ N and m ∈M as the standard inner product on Rk. The realification
of N (i.e. the induced R-vector space) is given by N tensor product R over the inte-
gers, NR = N ⊗Z R. We now can define half spaces as Hi = {u ∈ NR | 〈u, vi〉 ≥ 0}
for vi ∈M using the standard inner product.

Finally, we define a strictly convex rational polyhedral cone σ (or just cone for short)
to be a pair (σ,N) where N is a lattice and σ is a finite intersection of half-spaces
Hi in NR where each vi ∈ N∨ = M . The dual cone to σ, σ∨ = {v ∈ MR | 〈u, v〉 for
all u ∈ σ}, is a cone in MR. A face of a cone is τ = Hm ∩ σ for some m ∈ σ∨. To
denote that τ is a face of a cone σ, we write τ � σ. The dual face to τ is a face of
σ∨ given by τ ∗ = σ∨ ∩ τ⊥ where τ⊥ = {u ∈MR | 〈u, v〉 = 0 for all v ∈ τ}.

A morphism of cones f : (σ,N) → (σ′, N ′) is a map in Hom(N,N ′) extended to a
linear transformation of vector spaces NR → N ′R so that f(σ) ⊆ σ′. A basic fact of
toric geometry is that every cone (σ,N) can be realized as σS = Hom(S,R≥0) where
S = σ∨ ∩M is a toric monoid and the Hom is taken in the category of monoids.
For example, the cone {(x, y) | x, y ∈ R≥0}, the first quadrant in the plane, can be
realized as σ = Hom(N2,R≥0) along with the lattice N = Hom(Z2,Z).
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σ = Hom (N2,R≥0) σ∨

Figure 1. σ = Hom(N2,R≥0) and σ∨

We see that σ is generated by two elements, e1 = (1, 0) and e2 = (0, 1) and thus has
two faces.

We will always write σM for the cone realized as Hom(M,R≥0) where, again, the Hom
is taken in the category of monoids.

2.3. Category Theory. A category C consists of a collection of objects and a col-
lection of morphisms between those objects such that the following axioms are held:

(1) For every A ∈ C, there exists the identity morphism on A, IdA : A→ A
(2) For A,B,C ∈ C, if f ∈ Hom(A,B) and g ∈ Hom(B,C), then g◦f ∈ Hom(A,C)
(3) For morphisms f, g, h, composition is associative, f ◦ (g ◦ h) = (f ◦ g) ◦ h

The notation Hom(A,B) denotes the set of morphisms from objects A to B in cat-
egory C. To avoid confusion when discussing different categories, we will specify the
category for a Hom set, HomC(A,B). For categories C,D, a contravariant functor
F takes an object C ∈ C and sends it to an object F (C) ∈ D and a morphism in
f : C1 → C2 in C to the morphism F (f) : F (C2)→ F (C1) in D.

Some examples of categories are TorMon, whose objects are toric monoids and mor-
phisms are identity-preserving homomorphisms, and RPC, whose objects are rational
polyhedral cones and morphisms are cone morphisms.

3. Extended Cones and Fans

3.1. Extended Cones. Recall for a toric monoid M , any cone is realized as σ =
Hom(M,R≥0). An extended rational polyhedral cone is produced from any cone by
taking the compactification σ = Hom(M,R≥0), where R≥0 = R≥0 ∪ {∞}. This is a
compact topological space containing σ as a dense open subset. Away from σ, this
construction introduces faces at infinity F (τ, τ ′), the set of points in τ that are in the
τ ′ direction to infinity. Our focus will be those faces at infinity of the form F (σ, τ).
The details in this case are as follows. Given a face τ of σ let Nτ denote the sublattice
of N spanned by the points in τ ∩N and set N(τ) = N/Nτ . The cone quotient σ/τ
is a cone in N(τ)R described by the image of all the faces of σ containing τ through
the induced quotient map of vector spaces NR −→ N(τ)R:

F (σ, τ) ∼= σ/τ = {[τ ′] ⊂ N(τ)R|τ � τ ′ � σ}.
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For a better understanding of how this works, lets discuss the extended cone σ =
Hom(N2,R≥0) produced from our example above.

F (σ, τ1)

τ1

τ2

F (σ, τ2)

Figure 2. σ = Hom(N2,R≥0)

The face at infinity F (σ, τ1) is the set of points such that e1 is sent to ∞ and e2 is
sent to a real number. The notation F (σ, τ1) denotes the face at infinity of σ given by
taking a quotient of σ along τ1 and gluing in the resulting quotient space at infinity.
This open face not include the point (∞,∞), whereas the extended face at infinity
F (σ, τ1) does. The full extended cone is depicted in Figure 2.

A morphism of extended rational polyhedral cones is a continuous map f : σ1 → σ2

so that the restriction f |σ1 of f to the interior cone is a cone morphism. With this
we recall from [HMU19, Section 2] an important way to decompose any morphism of
extended rational polyhedral cones.

Lemma 3.1 (Structure Lemma). Any morphism f : σ1 → σ2 decomposes uniquely
into a factorization α : σ1 → F (σ2, τ) for some τ a face of σ2 where α|σ1 is induced
from a morphism of cones (i.e. the image meets the open interior of F (σ2, τ)), and
i is the inclusion of F (σ2, τ) into σ2 as an extended face at infinity.

For a thorough introduction to extended cones, see [HMU19, Section 2].

3.2. Extended Fans. A rational polyhedral fan (or fan for short) is a finite collection
of cones ∆ all under the same lattice N and is closed as a collection under taking
intersections of cones. By this, we mean that if we intersect two cones such that the
intersection is nonempty, then the resulting intersection is itself a cone. A morphism
of fans (∆, N)→ (∆′, N ′) is a morphism f ∈ Hom(N,N ′) of lattices who’s canonical
extension to the linear map of vector spaces fR : NR → N ′R restricts to a morphism
of cones for each σ ∈ ∆.

σ1 σ2

F (σ2, τ)

α
i

f

Figure 3. Structure Lemma
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As above, given a cone σ of ∆ let Nσ denote the sublattice of N spanned by the points
in σ ∩N and set N(σ) = N/Nσ. Following notation in toric geometry, we denote by
Star(∆, σ) the fan in N(σ)R given by the image of all cones σ′ ∈ ∆ containing σ as
a face through the induced quotient map of vector spaces NR −→ N(σ)R:

Star(Σ, σ) = {[σ′] ⊂ N(σ)R|σ � σ′ � ∆}.
The cone quotients {σ′/σ|σ � σ′} form the cones of Star(∆, σ), while σ′/σ and σ′′/σ
meet in a face τ/σ precisely when σ � τ � σ′ and σ � τ � σ′′.

For a given fan ∆, the associated extended rational polyhedral fan ∆ can be pro-
duced by extending all cones in ∆ and gluing along extended common faces. This
induces gluing of the extended cones

σ =
⊔
τ�σ

F (σ, τ)

among all the ended cones in ∆, resulting in

∆ =
⊔
σ∈∆

Star(∆, σ).

We denote by Star(∆, σ) the extended fan of one of these maximal fans at infinity.
By the same construction, we have

Star(∆, σ) =
⊔

σ′∈∆,σ�σ′
Star(∆, σ′).

A morphism of extended fans is a continuous map of topological spaces f : ∆ → ∆′

such that the restriction f to any extended cone σ ∈ ∆ factors through a morphism
of extended cones.

Let f : ∆ → ∆′ be a morphism of extended fans. Applying Lemma 3.1 cone
by cone, one obtains an analogous structure lemma about unique factorization of
morphsims of extended fans: there is a unique cone σ′ of ∆′ so that the map f
factors first as a map f that sends ∆ to Star(∆′, σ′) and whose image meets the open
interior of Star(∆′, σ′), and then by i the inclusion of Star(∆′, σ′) into ∆′ as a fan at
infinity.

∆ ∆′
f

f

Star(∆′, σ′)

i

Figure 4. Decomposition of a morphism of fans

It is always best to think of extended fans as gluings of extended cones along faces.
For example, consider the two fans we will be using often, ∆1 and ∆2, as shown
below in Figure 5. The extended fan ∆1 is two copies of the extended cone σN∞ =
Hom(N∞,R≥0) glued along the origin (the origin itself is a zero-dimensional vector
space, which agrees with the idea that the intersection of these two cones is a single
point). The extended fan ∆2 is three copies of the extended cone σ(N2)∞ glued along
appropriate one-dimensional faces. Further in the paper, we will refer to ∆1 as ∆P1

F1

and ∆2 as ∆P2
F1
.
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∆1

∆2

τ1

τ2

τ3

σ1σ2

σ3

0

Figure 5. ∆1 and ∆2

4. Monoid Schemes

The theory of schemes was traditionally adapted for commutative rings, as described
by [DF04]. Here however, we want to translate those ideas for monoids as described
in [CnHWW15].

4.1. Pointed Toric Monoids. We will work throughout with pointed toric monoids.
A pointed monoid is a monoid M containing a unique totally absorbing element, de-
noted ∞. A totally absorbing element of a monoid has the property that for all
m ∈ M , ∞ + m = m +∞ = ∞. From any monoid M we can construct a pointed
monoid M∞ = M ∪∞ by including an absorbing element. A pointed toric monoid
is a pointed monoid M = P∞ produced by including an absorbing element to a toric
monoid P or, equivalently, a monoid for which the underlying unpointed monoid
P = M − {∞} is toric. A morphism of pointed monoids is a homomorphism of
monoids sending 0 to 0 and ∞ to ∞.

Recall that in our definition of ideal in Section 2.1, the emptyset is always vacuously
a prime ideal of a monoid. However, we have the following lemma:

Lemma 4.1. Let M be a pointed toric monoid and I ⊆M a non-empty ideal. Then
∞ ∈ I.

Proof: Let I be an ideal and i ∈ I. Then i+∞ =∞ ∈ I.�

In particular, {∞} is a prime ideal of any pointed monoid, and in the geometry of
pointed monoids usually plays the role of the minimal prime ideal. With this in
mind, we follow the conventions of [CnHWW15] and define ideals of pointed toric
monoids slightly differently: let M be a pointed toric monoid; an ideal N ⊂ M is a
proper pointed subset, meaning M 6= N and ∞ ∈ N , such that N is closed under
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the operation of M and for all n ∈ N and m ∈M , m ·n ∈ N . Thus ideals of pointed
toric monoids are by definition nonempty.

We use the notation Spec(M) = {p ⊂ M |p is a prime ideal} for the prime spectrum
of a pointed monoid M . We make this set a topological space by endowing Spec(M)
with the Zariski topology that defines closed sets as Z(I) = {p ∈ Spec(M) | I ⊆ p}
for I an ideal in M . Then for f ∈ M , call Df the set of prime ideals in X that do
not contain f . The set Df is called a principal (or distinguished) open set in X, and
the distinguished opens form a basis for the Zariski topology on Spec(M).

In [CnHWW15], localization of a monoid at a prime is written as Mp for p a prime
ideal. In order to avoid confusion, we will always write the localization at a prime as
M [ 1

M−p ].

Remark 1. For a monoid M , it is generally the case that (M∞)k 6= (Mk)∞ for
k > 1.

The former has an absorbing element in each of the k−dimensions and the latter
has a single absorbing element. For example, in Spec((N3)∞), any element of this
pointed monoid is either a 3-tuple whos coordinates are elements of N or the absorb-
ing element ∞. In (N∞)3, any element of this monoid are 3-tuples whos coordinate
are elements of N∞. The absorbing elements of (N∞)k are (∞, 0, 0), (0,∞, 0) and
(0, 0,∞).

4.2. Sheaves. Let X be a topological space. A presheaf F on X is comprised of a
monoid of functions F(U) on U for every open set U ⊂ X and the property that for
inclusions of open sets U ⊆ V , there exists a monoid homomorphism given by the
restriction map rV,U : F(V )→ F(U) satisfying:

(1) rU,U = Id|U
(2) for open subsets U ⊂ V ⊂ W , rW,U = rW,V ◦ rV,U .

An element f ∈ F(U) is called a section. An element g ∈ F(X) is called a global
section. A presheaf F on X is a sheaf if the following axioms are satisfied: For ⋃

i Ui
an open covering of U :

(3) Locality: if s, t ∈ F(U) and s|Ui
= t|Ui

for all i, then s = t.
(4) Gluing: if si ∈ F(Ui) and Ui ∩ Uj = ∅ such that rUi,Ui∩Uj

(si) = rUj ,Ui∩Uj
(sj)

for all i, j, then there exists s ∈ F(U) such that rU,Ui
(s) = si for all i.

As a quick example, let U in Figure 6 be covered by U1, U2 and U3 (colored red, blue
and green respectively). Suppose we have functions f1, f2, f3 for corresponding Ui, as
well as for each Ui ∩Uj, fi = fj. The gluing axiom guarantees there exists a function
f ∈ O(U) such that rU,Ui

(f) = fi.

Let F , G be sheaves of monoids of a topological space X. A morphism of sheaves
ϕ : F → G is a family of monoid homomorphisms, one for each open set of X that
respects restrictions. For an open set U ⊆ X, we get a homomorphism
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ϕ(U) : F(U) → G(U). Consider another open set U ′ ⊆ U ⊆ X. Then we expect
r|U,U ′ ◦ ϕ(U) = r|U,U ′ ◦ ϕ(U ′), resulting in a commutative diagram.

U1 U2 U3

f1 ∈ F(U1)

f2 ∈ F(U2)

f3 ∈ F(U3)

Figure 6. The gluing of functions f1, f2 and f3

4.3. Schemes. An important example is the structure sheaf we build for any space
X = Spec(M) constructed as the prime spectrum of a pointed monoid. The struc-
ture sheaf of X is defined on distinguished open sets to be OX(Df ) = M [ 1

f
]. Global

sections of the structure sheaf are OX(Spec(M)) = M . Since distinguished open sets
form a basis, the sheaf axioms uniquely determine this structure sheaf on every open
set of X. Briefly, on an arbitrary open set U ⊂ X, the local sections in OX(U) take
the form of the subset of Πp∈UM [ 1

M−p ] consisting of elements which locally look like
a
fk

for some f ∈ M . For p ∈ Spec(M) we call the localized monoid M [ 1
M−p ] the

stalk (or local monoid) of the structure sheaf at p. For more details, see [CnHWW15,
Section 1] (or [DF04, Section 15.5] for the theory over rings). We call such a space
X = Spec(M) with its structure sheaf an affine monoid scheme.

Familiarizing ourselves with the affine monoid scheme X = Spec((Nk)∞) is essen-
tial for the rest of the paper. Denote N(n1, n2, ..., nk) as the string of products of N
and N+ where ni = 0 (or 1) represents N (or N+) in the i−th coordinate, and let
N(n1, n2, ..., nk)

∞ = N(n1, n2, ..., nk) ∪ {∞}. For example, N(1, 0, 1) = N+ × N× N+

and N(1, 1, 0)∞ = N+ ×N+ ×N ∪ {∞}. Also, allow ei to denote the primitive i− th
coordinate vector of Nk.

The prime ideals in N∞ are simply {∞} and N+ ∪ ∞. In (N2)∞, the prime ideals
are {{∞},N(1, 0)∞,N(0, 1)∞,N2 − (0, 0) ∪ {∞}}, as pictured in 4.3. Notice that
the arrows are squiggly. This signifies that the topology has partial ordering: for
x, y ∈ X, x ≤ y means y is in the closure of {x}.

Lemma 4.2. The sets N(n1, n2, ..., nk) are prime ideals in Nk when at least one ni = 1
and at least one nj = 0.

Proof: Suppose N(n1, n2, ..., nk) has a 1 in the j−th positions. Assume (a1, a2, ..., ak)+
(b1, b2, ..., bk) ∈ N(n1, n2, ..., nk) and (a1, a2, ..., ak) 6∈ N(n1, n2, ..., nk). If (a1, a2, ..., ak) 6∈
N(n1, n2, ..., nk), it must mean that aj = 0. But for aj + bj ∈ N(of j − th dimension)
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N+ × N ∪ {∞}

N× N+ ∪ {∞}

N2 − (0, 0) ∪ {∞}

{∞}

Figure 7. Prime spectrum of (N2)∞

which is just N+, then bj = 1. So (b1, b2, ..., bk) ∈ N(n1, n2, ..., nk).�

Lemma 4.3. Nk − (0, 0, ..., 0) is a prime ideal in Nk.

Proof: Let a + b ∈ Nk − (0, 0, ..., 0) and assume a 6∈ Nk − (0, 0, ..., 0). Then a =
(0, 0, ..., 0) which is the identity of Nk. So a+ b = 0 + b = b ∈ Nk − (0, 0, ..., 0).�

It is straightforward to see that the analogous lemma’s hold for N(n1, n2, ..., nk)
∞ and

Nk − (0, 0, ..., 0) ∪ {∞} in (Nk)∞.

We call the prime ideal in Lemma 4.2 the closed or maximal point of Spec(Nk) since
it contains every other ideal. Likewise, we call ∅ the minimal point of Spec(Nk) it is
contained is every other ideal.

Lemma 4.4. Let X be a monoid scheme and U ⊆ X an open subscheme. Then the
following are equivalent.

(1) U is an affine monoid scheme
(2) U has a unique maximal point
If X = Spec(A), every affine open subscheme is Spec(Ap) where Ap = A

î
1

A−p
ó
for

some p.

A proof of this lemma can be found in [CnHWW15]. We now put Lemma 4.4 into
practice using X = Spec((N2)∞). Let U = {{∞},N(1, 0)∞}. This is open since this
is the distinguished open set of the ideal 〈e2〉. By Lemma 4.4, there must exist a
prime ideal p such that U = Spec(N2[ 1

N2−p ]∞). One way to obtain this affine monoid
scheme is abuse the fact that U was defined from the distinguished open set of the
ideal 〈e2〉. Thus let’s localize e2 in our monoid. That is, N2[e−1

2 ]∞ = N2∞
e2

= N×Z∞.
The prime ideals in N × Z∞ are {∞} and N+ × Z∞ as pictured below. Notice that
{∞} ⊆ {∞} and N× (N+)∞ ⊆ Z× (N+)∞

4.4. Morphisms. Let (Spec(M),OSpec(M)) and (Spec(N),OSpec(N)) be two affine
monoid schemes. A morphism of affine schemes

ϕ : (Spec(M),OSpec(M))→ (Spec(N),OSpec(N))

is a pair ϕ = (ϕ, ϕ#) such that
(1) ϕ : Spec(M)→ Spec(N) is Zariski continuous map of topological spaces;
(2) there are monoid homomorphisms ϕ#(U) : OSpec(N)(U)→ OSpec(M)((ϕ)−1(U))

for every Zariski open subset U in Spec(M) that commute with restrictions
maps, as in Section 4.2, and;
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N× Z∞
∞

Figure 8. N× Z∞ and it’s prime ideals

(3) the induced maps M [ 1
M−p ] −→ N [ 1

N−ϕ(p)
] for each p ∈ Spec(M) send the

maximal ideal of M [ 1
M−p ] into the maximal ideal of N [ 1

N−ϕ(p)
].

Though we don’t get into the technical details here, briefly, the system of morphisms
in (2) makes ϕ# a morphism of sheaves OSpec(N) −→ ϕ∗OSpec(M) on Spec(N) as in
Section 4.2 above. Notice how if we choose U = Spec(N), then ϕ−1(U) = Spec(M).
This gives us a monoid homomorphism

ϕ# : OSpec(M)(Spec(M))→ OSpec(N)(Spec(N))

on global sections, i.e. a monoid homomorphism ϕ# : N →M . Just as in scheme the-
ory for rings, this definition makes the category of affine monoid schemes equivalent
to the category of pointed monoids with morphisms going in the opposite direction.
In the other direction, from a morphism ϕ# : N →M we can build the corresponding
Zariski continuous map ϕ : Spec(M)→ Spec(N) of topological spaces by sending the
prime ideal p ⊂ M to its inverse image (ϕ#)−1(p), a prime ideal in N . Through-
out the rest of this thesis we will use this equivalence to study morphisms of affine
schemes by studying the underlying morphisms of pointed monoids.

5. Morphisms of Affine Spaces

We now begin our study of sets of morphisms in the categories of pointed toric
monoids, toric monoid schemes, and extended fans.

5.1. Morphisms from A1 to A1. We begin with morphisms from the affine line to
the affine line in each of the three settings.

1. HomMon(N∞,N∞): A morphism in this hom set is determined by what the
morphism does to the element 1 in N∞, the domain, since 0 must be sent to 0
and ∞ must go to ∞. Then 1 can go to either any element of N or ∞. Thus
HomMon(N∞,N∞) = N ∪ {pt} = N∞ as sets.

2. HomERPF(σN∞ , σN∞): By the structure lemma for morphisms of extended
cones, a morphism σ1 −→ σ2 can be uniquely factored into a morphism from
σ1 to F (σ2, τ) for some τ a face of σ2 whose image meets the open interior of
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N+ ∪ {∞}{∞} N+ ∪ {∞}{∞}

f

Figure 9. Hom(Spec(N∞), Spec(N∞))

F (σ2, τ), followed by an inclusion into σ2. We have two faces of σ2 to choose
from: τ = 0 and τ = σN∞ .

1) For τ = 0 the face F (σN∞ , 0) is simply Hom(N,R≥0). Now we can ask
what are the morphisms from σN to Hom(N,R≥0). The morphism must
respect the underlying lattices of these cones, as well as preserve orienta-
tion in terms of positive and negative. The lattices for each of these cones
is Z, so now we can consider the maps Z→ Z. As before, it matters only
where 1 gets sent to but now we would like to send it somewhere positive.
However sending 1 to 0 would collapse Z onto 0, which is also an option.
Thus we get N choices for these morphisms.

2) The face F (σN∞ , σN∞) is simply a point. There is only one map from
σN∞ to a point, the constant map.

We get that the Hom set of σN∞ to itself is also N∞.

3. Hom(Spec(N∞), Spec(N∞)): The discrete geometry in this case is diagramed
in Figure 9. The set Spec(N∞) consists of the points {∞} and (N+)∞. The
closure of {∞} is the whole space, since {∞} is the minimal point. There are
3 continuous maps of topological spaces: (1) the map that sends Spec(N∞)
to {∞}, (2) {∞} to {∞} and (N+)∞ to (N+)∞ and (3) Spec(N∞) to (N+)∞.
We split this into several subcases, wherein we will consider the possible mor-
phisms of underlying structure sheaves, f#, for each f . Unsurprisingly, f# is
defined from N∞ → N∞.

Subcase 1 Since f({∞}) = {∞} and f(N∞) = {∞}, we see that f#−1({∞}) =
{∞} and f#−1(N∞) = {∞}. The induced morphism f# must send 0 7→ 0 and
∞ 7→ ∞. Thus what determines our map is where e1 is sent. To preserve the fact
that no positive integers are sent to ∞, it’s clear that e1 7→ 0. Thus we have a
constant zero map (away from ∞).

Subcase 2 Since f({∞}) = {∞} and f((N+)∞) = (N+)∞, then f#−1({∞}) = {∞}
and f#−1((N+)∞) = (N+)∞. To guarantee that (N+)∞ is mapped onto (N+)∞, then
e1 7→ a ∈ N+. This morphism f induces countably many morphisms f#, one for each
choice of a.

Subcase 3 If f({∞}) = (N+)∞ and f((N+)∞) = (N+)∞, then f#−1({∞}) = (N+)∞

and f#−1((N+)∞) = (N+)∞. For this map, f# must send e1 7→ ∞. This is the con-
stant ∞ map (away from zero).
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Since we have a constant zero map, countably many maps for each positive inte-
ger and a constant ∞ map, this Hom set is N∞. Thus we get the Hom sets of
HomMon(N∞,N∞), HomERPF (σN∞ , σN∞) and Hom(Spec(N∞), Spec(N∞)) are all the
same.

5.2. Morphisms from A1 to A2. We now compute one more example of this equiva-
lence of Hom sets in the affine setting. We’ll show that Hom sets of HomMon((N2)∞,N∞),
HomERPC(σN∞ , σ(N2)∞) and Hom(Spec(N∞)), Spec((N2)∞)) again have a similar struc-
ture.

1. HomMon((N2)∞,N∞): Unstrikingly, this is the simplest Hom set to dissect.
However, it will give us an early answer to seek out when we try to describe
Hom sets for HomERPC(σN∞ , σ(N2)∞) and Hom(Spec(N∞), Spec((N2)∞)). As
with any morphism of pointed monoids, 0 7→ 0 and ∞ 7→ ∞. So what is left
is to determine where e1 and e2 go. There are two N∞ worth of choices, thus
HomMon(Spec((N2)∞),N∞) = (N∞)2. Note that, as in Remark 4.1 above,
(N∞)2 6= (N2)∞.

2. HomERPC(σN∞ , σ(N2)∞) : We again use the unique factorization of morphisms
of extended cones to classify the possible maps. There are four faces of σN∞

(as depicted in Figure 2), so four possible faces whose extension we may factor
through: F (σN2 , τ1), F (σN2 , τ2), F (σN2 , 0) and F (σN2 , σN2).

Subcase 1 In the F (σN2 , τ1) case, this is simply the different ways we can
map σN to σN. We think of F (σN2 , τ1) as the vertical line at (∞, b) for b ∈ N.
Recall we’d like to preserve the underlying lattice of the vector space. So 1
must go to some element of N. Thus there are N choices.

Subcase 2 The F (σN2 , τ2) is nearly identical to the previous case. However,
F (σN2 , τ2) represents the horizontal line at (a,∞) for a ∈ N of the extended
cone σ(N2)∞ . We get N maps.

Subcase 3 We now consider the maps from σN to F (σN2 , 0) which is just σN2

itself. Again, to preserve the underlying lattice and vector space structure, 1
must go to a lattice point of σN2 . So we get N2 possible morphisms, one for
each lattice point.

Subcase 4 The face F (σ, σ) is a single point. So this gives just a constant
map.

Thus we get the followings maps: N2, (∞,N), (N,∞) and (∞,∞). Thus we
get that HomERPC(σN∞ , σ(N2)∞) = (N∞)2.

3. Hom(Spec(N∞), Spec((N2)∞)): As before, we will first consider all the con-
tinuous maps of topological spaces, and then classify the corresponding un-
derlying morphism of sheaves.
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(N+)∞
N(0, 1)∞

N(1, 0)∞

(N2 − (0, 0))
∞

{∞}
{∞}

1 2

a

c

b

d

Figure 10. We will refer to this diagram to describe the continuous
maps. The convention used to describe maps will number preimage
points and letter image points. A pair, consisting of a number and
a letter, is what f if the letter to right of the number. For example,
if f has the representation 1d3e, then f sends the point representing
1 (or 3) to the point representing d (or e).

The continuous maps of spaces are: 1a2a, 1a2b, 1a2d, 1a2c, 1b2c, 1b2b, 1c2c,
1d2c and 1d2d (using notation as described in Figure 10). As always, the
underlying morphism of sheaves will determine the classification of associated
morphisms of schemes for each continuous map of topological spaces. To de-
termine said morphisms from (N2)∞ to N∞, we only need to consider where
e1 and e2 go. Thus for each subcase, we will identify the corresponding maps
by (x, y) where e1 is sent to x and e2 is sent to y. When we say preimage, we
mean the preimage of the induced morphism f# of f.

Subcase 1: 1a2a Since the preimage of {∞} and (N+)∞ is just ∞, e1 and
e2 must go to 0. Thus we will identify this constant map by (0,0).

Subcase 2: 1a2b The preimage of {∞} and (N+)∞ is {∞} and N(1, 0)∞

respectively. This means e2 7→ 0 and e1 is sent to an element of N+. Thus
1a2b corresponds to maps (a, 0) for a ∈ N+.

Subcase 3: 1a2d By similar analogy, e1 7→ 0 and e2 is sent to an element of
N+. Thus 1a2d corresponds to maps (0, b) for b ∈ N+ .

Subcase 4: 1a2c The preimage of {∞} is {∞} while the preimage of (N+)∞

is (N2 − 0)∞. So e1 and e2 are sent to nonzero elements of N+. So 1a2c
corresponds to maps (a, b) ∈ N(1, 1).

Subcase 5: 1b2c Since the preimage of {∞} is N(1, 0)∞ and preimage of
(N+)∞ is (N2 − 0)∞, e1 7→ ∞ and e2 7→ b > 0. So 1b2c corresponds to maps
(∞, b) for b ∈ N+.

Subcase 6: 1b2b The preimage of {∞} is N(1, 0)∞ and (N+)∞ is N(1, 0)∞.
Thus this map sends e1 7→ ∞ and e2 7→ 0. Thus 1b2b corresponds to the
morphism (∞, 0).

Subcase 7: 1c2c The preimage of {∞} and (N+)∞ is (N2− 0)∞. Thus 1c2c
corresponds to the morphism (∞,∞).
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Subcase 8: 1d2c The preimage of {∞} is N(0, 1)∞ and (N+)∞ is (N2−0)∞.
This corresponds to maps (a,∞) for a ∈ N+.

Subcase 9: 1d2d Finally, the preimate of {∞} is N(0, 1)∞ and preimage of
(N+)∞ is N(0, 1)∞. This corresponds to the map (0,∞).

Rearranging the maps in the following combinatorial diagram reveals that the
Hom set from Spec(N∞) to Spec((N2)∞) is simply (N∞)2.

(0, 0) (a, 0) (∞, 0)

(0, b) (a, b) (∞, b)

(0,∞) (a,∞) (∞,∞)

Figure 11. (N∞)2

We present the generalized computation of the Hom set of scheme morphisms from
Spec(N∞) to Spec((Nk)∞).

Theorem 5.1. Hom(Spec(N∞), Spec((Nk)∞) = (N∞)k

Proof. This proof is combinatorial and generalizes the processes used in 5.1 and
5.2. As always we will think of mapping the point labeled 1 ({∞} ∈ Spec(N∞))
to some prime ideal in Spec((Nk)∞) and 2 ((N+)∞ ∈ Spec(N∞)) to some prime ideal
in Spec((Nk)∞) that respects partially ordering, as mentioned earlier.

First, we map 1 to {∞} ∈ Spec((Nk)∞). Then 2 is allowed to go to any other prime
ideal in Spec((Nk)∞), since any other prime ideal in Spec((Nk)∞) contains ∞, by
Proposition 4.3. The way we will denote this is 2 7→ N(n1, n2, ..., nk)

∞ where ni = 0
for at least one i. As always, this is a single morphism of topological spaces, but
it may be induced by many underlying morphisms of pointed monoids. If 2 is sent
to {∞}, then this results in the zero morphism (0, 0, ..., 0). Otherwise, we see that
f#−1({∞}) = {∞} and f#−1((N+)∞) = N(n1, n2, ..., nk)

∞. Next we consider where
e1, ..., ek get sent. If n1 = 1, then e1 7→ a1. Generally, if ni = 1, then ei 7→ ai ∈ N+,
otherwise ei 7→ 0. We can explicitly write this as

f : 1 7→ ∞, 2 7→ N(n1, n2, ..., nk)
∞ ⇔ f# defined by (a1δ1,n1 , a2δ1,n2 , ..., akδ1,nk

)

where δa,b is the Kronecker delta. Thus the maps we get are all positive integral
linear combinations of (1, 0, ..., 0), (0, 1, 0, ..., 0), ..., and (0, ..., 0, 1) where at least one
direction is excluded. For example, we obtain the maps (a1, 0, ..., 0), (a1, a2, 0, ..., 0),
(0, a2, 0..., 0, a6, ..., ak) and (a1, 0, a3, a4, ..., ak−1, ak). We exclude the case where all
ni = 1 because that is not a prime ideal. Instead, we have the maximal ideal (Nk−0)∞.
If we send (N+)∞ to this prime ideal, we may send each ei to an element of N+. This
provides the maps (a1, a2, ..., ak).
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Next we consider point 1 being sent to N(n1, n2, ..., nk)
∞. We must classify all the

possible targets for the point 2.

To generalize those details, let 1 7→ N(n1, n2, ..., nk)
∞, where at least one entry is 1

and one is 0, and 2 7→ N(m1,m2, ...,mk)
∞ where again at least one entry is 1 and one

is 0, and moreover if ni = 1 then mi = 1 for all i. Then the possible maps f# are
defined by Ä

∞δ1,δn1,m1
+ a1δ0,δn1,m1

, ...,∞δ1,δnk,mk
) + akδ0,δnk,mk

ä
where ai ∈ N+. So some maps we get are (∞, 0, ..., 0), (a1,∞,∞, 0, ...., ak), and
(∞,∞, 0, ...,∞,∞). Thus we get positive integral linear combinations of (1, 0, ..., 0),
..., (0, 0, ..., 1) and (∞, 0, ..., 0), ..., (0, ..., 0,∞) except where the components arn’t
strictly just all positive numbers, all zeros or all infinities. Moreover, we get all the
possible maps that have at least one ∞ except for the constant ∞ map.

Lastly, what remains is the constant ∞ map, which is obtained by sending 1, 2 7→
(Nk − 0)∞. Thus we get the map (∞, ...,∞) and we have all possible elements of
a ∈ (N∞)k. �

There is an analogous proof for showing Hom(σN∞ , σ(Nk)∞) is also (N∞)k, which we
refrain from writing for the sake of berevity. At this point, our understanding of
Hom((Nk)∞,N∞) should be deep enough to see that this hom set is (N∞)k, since
each ei, 1 ≤ i ≤ k, has N∞ choices to get send to. We end this section with the
following theorem.

Theorem 5.2. The following Hom sets are equal
1. Hom(Spec((Nk)∞),N∞)
2. Hom(σN∞ , σSpec((Nk)∞))

3. Hom(Spec(N∞), Spec((Nk)∞))

6. Morphisms of A1
F1 to P1

F1

We now begin translating these ideas into Hom sets involving P1
F1
, projective space

over F1. We define P1
F1

to be the gluing of two copies of Spec(N∞). Lets familiarize
ourselves with Spec(N∞) a bit more.

The open sets of Spec(N∞) are ∅, itself and {{∞}}. This makes sense since we get
exactly the amount of distinguished open sets according to the size of Spec(N∞), by
Lemma 1.3 of [CnHWW15]. Since Spec(N∞) has the Zariski topology, distinguished
open sets can be identified by a corresponding element of N∞. Suppose we choose
1, the generator of N∞. Now we localize N∞ at 1 and look at it’s prime spectrum.
Localizling at 1 gives

D1 = Spec

Ç
N∞
ñ

1

e1

ôå
= Spec(N∞[−1]) = Spec(Z∞)

Lemma 6.1. Spec(Z∞) = {{∞}}.
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Proof. Let p be a prime ideal in Z∞. By Lemma 4.1,∞ ∈ p. Assume for contradiction
that x ∈ p and x 6=∞. If x = 0, then x + a ∈ p for all a ∈ Z. So p = Z∞. If x 6= 0,
then x+ (−x) = 0 ∈ p, so again p = Z∞. �

Another useful lemma we would like to introduce generalizes Lemma 4.3. This will
come in handy later.

Lemma 6.2 M −M∗ is a prime ideal in M where M∗ is the set of units in M .

Proof. Let x ∈ M −M∗. We first show ax ∈ M −M∗ for all a ∈ M . Assume for
contradiction there exists a y ∈M such that y(ax) = 1. This implies (ya)x = 1, but
this contradicts x 6∈ M∗. So M −M∗ is an ideal. Let ab ∈ M −M∗. There are 4
cases: (1) a, b are units, (2) a is a non-unit, b is a unit, (3) a is unit, b is nonunit and
(4) a, b no unit. Since we have already established that M −M∗ is ideal, it remains
to just verify case (1). If (ab) ∈ M −M∗ with a, b units, then (ab)(b−1a−1) = 1 but
ab is not a unit. So M −M∗ is a prime ideal. �

Combining the proofs of Lemma 6.1 and 6.2, one can deduce that Spec((Zk)∞) =
{{∞}}. We are now able to write out the details for how to glue two copies of
Spec(N∞). Let X = Spec(N∞) and Y = Spec(N∞).

Then X has points (N+)∞X and {∞X}, while Y has points (N+)∞Y and {∞Y }. The
way we will glue X and Y is along an open set. Let the generator of N∞X be x
and the generator of N∞Y be y. Then as above UX = Dx = Spec(Z∞) = {{∞X}}
and UY = Dy = Spec(Z∞) = {{∞Y }}, where each copy of Z is generated by the
respective generator x or y. Topologically, we glue by setting {∞X} = {∞Y }. In
the language of atlases, X and Y are local affine charts that overlap in the open set
UX = UY . There are inclusion maps of this overlap into each chart: iX : UX −→ X
and iY : UY −→ Y . Topologically these inclusion maps simply include the point {∞}
of P1

F1 as either {∞X} or {∞Y }. Algebraically, they correspond to the morphisms of
pointed monoids

i#X :N∞ −→ Z∞ i#Y :N∞ −→ Z∞

∞ 7−→ ∞ ∞ 7−→ ∞
0 7−→ 0 0 7−→ 0

x 7−→ 1 y 7−→ 1.

To complete the gluing scheme theoretically, we must describe the morphism of
schemes γ : UX −→ UY along which we glue. It was described topologically above.
Algebraically, it corresponds to the morphisms

γ# :Z∞ −→ Z∞

∞ 7−→ ∞
0 7−→ 0

1 7−→ −1.

In P1
F1 , γ acts as a transition function on the overlap of the two affine charts. Note

that P1
F1

has an underlying integer lattice of rank 1, which is isomorphic to Z. This
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transition function identifies the generator x with the element −1 ∈ Z and y with
the element 1 ∈ Z, i.e. x = −y. This assignment will make more sense once we
investigate the following Hom Set.

N+∞
{∞}

1 2

N+∞
{∞}N+∞

a b c

Figure 12. Spec(N∞) and P1
F1

Theorem 6.2. Hom(Spec(N∞),P1
F1) = (Z) ∪ {±∞}.

Proof. As above, we identify the two copies of the prime spectrum of N∞ using
X = Spec(N∞) and Y = Spec(N∞), and let UX , UY be the open set consisting of
{∞} in each corresponding affine chart. The copy of X in P1

F1 corresponds to the
open set containing a and b, while Y corresponds to the open set containing b and c.

Subcase 1:1a2a This map is contained in X. In X, this map corresponded to the
constant ∞ map. We call this homomorphism −∞

Subcase 2: 1b2a This map is also contained in X. In X, we have already seen that
this corresponds to sending e1 7→ a ∈ N+. We think of these homomorphisms as the
negative elements of a copy of Z.

Notice in both these cases, the maps were completely contained in X. In other words,
these maps were not glued to any map in Y . This will be useful for our construction
later.

Subcase 3: 1c2c Likewise, this map is contained in Y and from Section 5.1, we
know this corresponds to the constant ∞ map in y.

Subcase 4: 1b2c This corresponds to maps b ∈ N+.

Subcase 5: 1b2b This is the only case where things get interesting due to the glu-
ing of the ∞’s of X and Y . First we will recognize the fact that Spec(N∞) is being
sent to the subset UX = UY of both X and Y . From earlier, we established that
the open set just containing {∞} corresponded to the prime spectrum of Z∞. So
in particular, there are two morphisms, α : Spec(N∞) → UX = Spec(Z∞) and
β : Spec(N∞) → UY = Spec(Z∞). Since we glued UX and UY along each other,
to ultimately construct P1

F1 , there is also the transition map γ : UX → UY defined
above. For the morphisms α and β to agree and determine the same map to P1

F1 ,
they must commute with γ. This is obvious topologically (see Figure 13).

Now we discuss the underlying sheaves. Since both points of Spec(N∞) map to the
unique point of UX and UY through α and β, the preimage of N+ in both cases is
∞X and ∞Y . Thus, the generators x and y of the global sections monoids Z∞ of X
and Y must both map to 0. From the discussion above, we saw that UX and UY were
glued using the map γ that sends the generator x to −y. This map preserves only
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Spec (N∞)

UX UY

∞− constant
map

∞− constant
map

{∞x} = {∞y}

Figure 13. The maps α, β and γ, topologically.

N∞

Z∞ Z∞

α# β#

γ#

Figure 14. Associated morphisms of pointed monoids α#, β# and γ#.

0 and ∞. So we see that diagrams are actually commutative triangles, in particular
γ◦α = β (as depicted in Figure 14). Thus there is one morphism of sheaves according
to 1b2b, the constant 0 map. We call this map 0 and we get the Hom set given by
the union of −∞ and ∞ with two copies of N+ and a 0. This results in a copy of
Z ∪ {±∞}. �

We can illustrate this Hom set as a graph, where each vertex is labeled according to
where e1 is sent in the underlying morphism of monoids and where an edge between
vertices means those maps are glued together.

0 0
∞ a b ∞

X Y

7. Morphisms of A1
F1 to P2

F1

Now, we repeat the computation for a target P2
F1 , the gluing of three copies of

Spec((N2)∞) along open sets. Again we can study distinguished open set in Spec((N2)∞)
to help us understand how these three copies are glued. Consider the distinguished
open set corresponding to e1; we invert e1, getting the monoid Z × N∞. We refer
to Lemma 6.2. We cannot use Lemma 3.1 since 0 is not the only unit of Z × N∞.
In fact the rest of units are of the form (a, 0) where a ∈ Z. So the only prime
ideals in Z × N∞ are {∞} and Z × (N+)∞. Then Spec(Z × N∞) corresponds to the
subset {{∞},N × (N+)∞} of Spec((N2)∞), since N × (N+)∞ ⊆ Z × (N+)∞. By a
similar construction, the distinguished open set corresponding to e2 is the subset
{{∞},N+ × N∞} ⊂ N+ × Z∞.
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X

Y

Z N+ × N∞

N+ × N∞

N+ × N∞

N× N+∞

N× N+∞ N× N+∞

X

Y

Z

gluing maps

a

b c

d

e

f

g

Figure 15. Gluing of three Spec((N2)∞)

In the construction of P2
F1 , the three copies of Spec((N2)∞) are glued along these

neighborhoods of Spec((N2)∞). We will use the similar notation style as before,
X = Spec((N2)∞), Y = Spec((N2)∞) and Z = Spec((N2)∞). Refer to Figure 15.

(1) X and Y are guled along UX = {{∞x},N+×N∞} and UY = {{∞y},N+×N∞}.

(2) X and Z are glued along UX = {{∞x},N × (N+)∞} and UZ = {{∞z},N ×
(N+)∞}.

(3) Y and Z are glued along UY = {{∞y},N×(N+)∞} and UZ = {{∞z},N+×N∞}.

The gluing maps generalize the previous example. They are induced by maps of
poinded monoids that are the identity on the N+ factors and sending the generators
of the Z factors to the negatives of each other in each case. To examine the Hom set
from Spec(N∞) to P2

F1
, we will use the same convention as before, where f is given

by what it does to the topological space and the algebraic f# morphism of sheaves
we categorize in each case. There will be 19 cases.

Theorem 7.1. Hom(Spec(N∞),P2
F1) is a gluing of three (N∞)2.

Proof.

Subcase 1: 1a2a This is the only f that incorporates all three of our affine copies.
The space Spec(N∞) is sent to the {∞} of X, Y and Z. In this case,

UX = Spec((Z2)∞) = {{∞x}}.

Likewise, UY = {{∞y}} and UZ = {{∞}}. When we consider the morphism of
sheaves, each generator of each (Z2)∞ is sent to 0. So we get the map (0, 0) for X, Y
and Z, where the first coordinate indicates where e1 is being sent to, and the second
where e2 is being sent to. But since we are gluing these points together, the maps are
also associated with one another. We notate whens maps are glued with one another
by a similarity of pairs α(β, γ) where α is a local affine chart, β is where e1 gets sent
to and γ is where e2 gets sent to. For example, 1a2a corresponds to the single map
of P2

F1 , x(0, 0) ∼ y(0, 0) ∼ z(0, 0).
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Subcase 2: 1a2d We will avoid some details in the following subcases since we really
are just associating maps to Spec((N2)∞), where details were given earlier. We do
have to be slightly careful about how localization works, however. Here, Spec(N∞)
must be sent to UX = Spec(N+ × Z∞) and UY = Spec(N+ × Z∞) in a way that is
compatible with the transition function from UX to UY . As described above, this tran-
sition function is determined by the map N+×Z∞ −→ N+×Z∞ that sends (n,m) 7→
(n,−m) for all n,m. The morphisms Spec((N2)∞) → UX and Spec((N2)∞) → UY
both correspond to morphisms of pointed monoids N+ × Z∞ → N∞. Moreover, the
preimage of∞ must be∞ and the preimage of N+∪{∞} must be N+×Z∞ in both.
Thus both must send their generator of the Z factor to 0 since it does not maps to
infinity and 0 is the only unit in N. To commute with the transition function, the
generator of both factors of N+ must map to the same value a ∈ N+. Thus we get a
map x(a, 0) ∼ y(a, 0) for each value of a.

Subcase 3: 1a2b Here, UZ = Spec((Z×N+)∞) and UX = Spec((Z×N+)∞). Then
each Z× (N+)∞ send their first generator to 0 and their second generator to b ∈ N+.
This gives the maps x(0, b) ∼ z(0, b) for values b ∈ N+.

Subcase 4: 1a2e Let UY = Spec((N+ × Z)∞) and UZ = Spec((Z × N+)∞). The
generators of (Z× N+)∞ are sent to 0 and b, respectively, as the transition function
is similar to those above but switches factors in the products. So we get the maps
z(b, 0) ∼ y(0, b).

Subcase 5: 1a2c This map is contained completely only in X. We get the maps
x(a, b).

Subcase 6: 1a2f Similarly, we get the maps y(a, b).

Subcase 7: 1a2g Similarly, we get the maps z(a, b).

Subcase 8: 1b2c This map is again completely contained only in X. We must have
e1 7→ a and e2 7→ ∞. We get the maps x(a,∞).

Subcase 9: 1b2b Here, UX = Spec((Z2)∞) and UZ = Spec((Z2)∞). The gen-
erators of both (Z2)∞ behave as e1, g1 7→ 0 and e2, g2 7→ ∞. We get the map
x(0,∞) ∼ z(0,∞).

Subcase 10: 1b2g This is similar to Subcase 8. We get the map z(a,∞).

Subcase 11: 1c2c This is simply the constant∞map, since we are sending Spec(N∞)
to Spec((N2 − 0)∞). We get the map x(∞,∞).

Subcase 12: 1g2g This is similar to Subcase 11. We get the map z(∞,∞).

Subcase 13: 1f2f This is similar to Subcase 11 & 12. We get the map y(∞,∞).
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Subcase 14: 1d2c This is similar to Subcase 8, except e1 7→ ∞ and e2 7→ b. We get
the map x(∞, b).

Subcase 15: 1d2d This is similar to Subcase 9. We get the map x(∞, 0) ∼ y(∞, 0).

Subcase 16: 1d2f Here we have that e1 7→ ∞ and e2 7→ b. We get the map y(∞, b).

Subcase 17: 1e2e This is similar to Subcase 9 and 15. We get the map y(0,∞) ∼
z(∞, 0).

Subcase 18: 1e2g This is similar to Subcase 8. We get the map z(∞, b).

Subcase 19: 1e2f This is similar to Subcase 8. We get the map y(a,∞).

As with Section 6, we get a graph (see Figure 16) that relates the gluing of maps for
each copy of Spec((N2)∞). �

X Y

Z

(0, 0)

(0, 0)

(0, 0)

(0, b)

(0, b)

(0,∞)

(0,∞)

(a, 0)

(∞, 0)

(a, 0)

(∞, 0)

(0, b)

(a, 0)
(∞, 0)

(0,∞)

(∞,∞)

(∞, b)

(a,∞)

(a, b)

(a, b)
(a,∞)

(∞,∞)
(∞, b)

(a, b)

(a,∞)

(∞, b)
(∞,∞)

Figure 16. Diagram showing gluings of maps in Hom(Spec(N∞),P2
F1)

Theorem 7.2. The hom sets Hom(Spec(N∞),P2
F1) and Hom(σN∞ ,∆N2∞) are bijec-

tive.

Since we only rigorously introduced Hom(Spec(N∞),P2
F1), we will characterize

Hom(σN∞ ,∆N2∞) as we prove Theorem 7.1. We employ the methods used in Section 5
as well as the theory discussed in Section 3.

Proof. We will have 7 cases, one for each cone that we can quotient out by. The cones
we have are 0, τ1, τ2, τ3, σ1, σ2 and σ3. We further notate the faces of each cone. Let
the faces of σ1 be τ11 = τ1 and τ12 = τ2, the faces of σ2 be τ22 = τ2 and τ21 = τ3 and
the faces of σ3 be τ31 = τ1 and τ32 = τ2. So we have τ12 = τ22 = τ2, τ11 = τ31 = τ1

and τ21 = τ32 = τ3. We adopt this to further hone in that each cone is glued along
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τ1

τ2

τ3

σ1σ2

σ3

0

Figure 17. Diagram of ∆P2
F1

the face of another cone.

Case 1: Star(∆, τ1) corresponds to the gluing of F (σ1, τ11) and F (σ3, τ31). By
the structure lemma of cones, we get the morphisms α : σN∞ → F (σ1, τ11) or
β : σN∞ → F (σ3, τ31). To preserve the vector space lattice, 1 in σN∞ must be sent to
a nonnegative integer in F(σ1, τ11) or F(σ3, τ31). If 1 is sent to 0 in both cones, these
maps are the same which makes sense since these cones only intersect at their 0’s.
Otherwise, α sends 1 to aα ∈ N+ or β sends 1 to bβ ∈ N+. We must be careful in that
the N+ in each of the F (σ1, τ11) and F (σ3, τ31) are distinct. Thus we get a fan that
is isomorphic to ∆P1

F1
. So the possible maps we get are all of σ1(∞, 0) ∼ σ3(∞, 0),

σ1(∞, b) and σ3(∞, b), using a similar notation as in the previous proof.

Case 2: Star(∆, τ2) corresponds to the gluing of F (σ1, τ12) and F (σ2, τ22). This case
similarly decomposes like Case 1. We get the following maps: σ1(0,∞) ∼ σ2(0,∞),
σ1(a,∞) and σ2(a,∞).

Case 3: Star(∆, τ3) corresponds to the gluing of F (σ3, τ32) and F (σ2, τ21). This is
similar to Cases 1 and 2. The maps we get are σ2(∞, 0) ∼ σ3(0,∞), σ2(∞, b) and
σ3(a,∞).

Case 4,5,6: Case 4,5 and 6 are all similar in that we will be quotienting out by σi
for i = 1, 2, 3. Here we are modding out by the interior of each σi in ∆. So we get the
constant maps σ1(∞,∞), σ2(∞,∞) and σ3(∞,∞) into each of the three extremal
vertices of the triangle.

Case 7: This case is by far the most interesting one, as it will give us the most
maps. For each cone σi, σN∞ is sending 1 to F (σi, 0). As we have seen earlier in the
paper, this means 1 is sent to any integer pair (a, b) ∈ N2. Let us remind ourselves
how each σi is glued with one another. The cones σ1 and σ2 are glued along σ1’s and
σ2’s ‘y-axis’, σ1 and σ3 are glued on σ1’s and σ2’s ‘x-axis’ and σ2 and σ3 are glued
along σ2’s ‘x-axis’ and σ3’s ‘y-axis’. Thus the only way maps from different cones
may potentially be glued with one another is along these faces of each cone. The only
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σ1 σ3

σ2

(0, 0)

(0, 0)

(0, 0)

(0, b)

(0, b)

(0,∞)

(0,∞)

(a, 0)

(∞, 0)

(a, 0)

(∞, 0)

(0, b)

(a, 0)
(∞, 0)

(0,∞)

(∞,∞)

(∞, b)

(a,∞)

(a, b)

(a, b)
(a,∞)

(∞,∞)
(∞, b)

(a, b)

(a,∞)

(∞, b)
(∞,∞)

Figure 18. Diagram showing gluings of maps in Hom(σN∞ ,∆P2
F1

)

map that lands completely in all three maximal cones is the constant map 1 7→ 0
to the internal origin. We get from this the map σ1(0, 0) ∼ σ2(0, 0) ∼ σ3(0, 0). The
maps that are glued along σ1 and σ3 are σ1(a, 0) ∼ σ3(a, 0). The maps that are glued
along σ1 and σ2 are σ1(0, b) ∼ σ2(0, b). The maps that are glued along σ2 and σ3

are σ2(a, 0) ∼ σ3(0, b). Thus, those are the only maps we get from F (σi, 0) that are
glued with some F (σj, 0). What remains are the (a, b) ∈ (N2)+ in each cone, so we
get maps σ1(a, b), σ2(a, b) and σ3(a, b) for each a, b ∈ N+. Thus we get the graph in
Figure 18, which is the same diagram for Hom(Spec(N∞),P2

F1). �
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