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The aim of this paper is to provide an organized (and hopefully coherent) presentation of methods and
techniques covered in MAT 411, Summer 2020. As advice on how to use this: I wrote this document linearly
so I will reference myself from earlier. I only cover the barebone structure of the techniques and don’t do
any examples, although doing examples is how you will get more comfortable with using these methods. I
do my best to try to imitate the computational hurdles needed to follow through each technique.

These are solely my personal notes and do not give insight into any exam questions. Please let me know
of mistakes.

1 Linear First Order Equations

These are equations that are of the form

y′ + P (t)y = Q(t) (1)

where P and Q are functions of t.

1.1 Separable Equations

This is the easiest case of differential equations. If we can express the differential equation as

y′ = g(t)h(y) (2)

then diving by h(y) we may integrate ∫
1

h(y)
dy =

∫
g(t)dt

Let H(y) be the antiderivative of 1/h(y) and G(t) be an antiderivative of g(t). Then the solution to (2) is

H(y) = G(t) + C

1.2 Integrating Factor

The differential equation (1) is in standard form: coefficient of y′ is 1. The technique of using an integrating
factor means we would like to make the left hand side more digestible by multiplying something. Let the
integrating factor be this something

µ(t) = exp

(∫
P (t)dt

)
Multiply equation (1) by µ(t) and we can decompress the left hand side into

d

dt
(µ(t)y) = µ(t)Q(t) (3)
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When integrating (3) over t, the integral and derivative will cancel out by the fundamental theorem of
calculus. This leaves

µ(t)y =

∫
µ(t)Q(t)dt ⇒ y =

1

µ(t)

∫
µ(t)Q(t)dt

as a solution to (1).

1.3 Exact Equations

Let the expression M(x, y)dx+N(x, y)dy be called a differential form. A differential form is said to be exact
if My = Nx. Remark: Really there should be some notion of a neighborhood where this differential form is
defined, but in computations this is usually overlooked. An exact differential form gives an exact differential
equation

M(x, y)dx+N(x, y)dy = 0 (4)

which is the differential equation we are interested in solving. We are going to construct a solution F (x, y)
to this differential equationwith the property that Fx = M and Fy = N . Recall by Clairaut’s theorem, the
order of partial differentiation can be swapped. Begin with integrating the equation Fx = M with respect
to x

F (x, y) =

∫
M(x, y)dx+ g(y) (5)

where the g(y) pops up since d
dxg(y) = 0. Let L(x, y) be the antiderivative of M(x, y). What is left to do is

to find what g(y) is (I interpret g(y) as a “correction factor” to L(x, y), you should understand what I mean
by the end of this derivation). Deriving (5) with respect to y will give

N(x, y) =
d

dy
L(x, y) + g′(y)

N(x, y)− d

dy
L(x, y) = g′(y) (6)

Then integrate (6) with respect to y (by now we should know explicitly what d
dyL(x, y) is) to obtain g(y)

with a constant of integration C attached. Then we obtain

F (x, y) = L(x, y) + g(y) = C

to be the solution to (4).

This technique follows (somewhat cleanly) if equation (4) is exact. But what happens if we don’t have
exactness? Then we employ a special integrating factor in the following fashion.

If
My −Nx

N
is a function of x, then let µ(x) = exp

(
My −Nx

N

)

If
Nx −My

M
is a function of y, then let µ(y) = exp

(
Nx −My

M

)
Be careful that tweeking & algebra may be required to cancel out expressions and obtain a single variable.
Once you multiply (4) by µ(x) or µ(y), then proceed with the technique described above. By multiplying
the equation by µ(x) or µ(y), you may “lose” solutions.
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1.4 Homogenous Equations

This is our first technique that involves substitutions. Suppose we have a differential equation

y′ = f(x, y)

If f(x, y) = g(x)h(y) for some g and h, then this equation is separable. If f(x, y) is a function given by the
ratio y/x, the differential equation is then called homogenous. In this case, we use the substitutions

v =
y

x
,

dy

dx
= v + x

dv

dx

Let f(x, y) = G(v). Then we obtain the equation

v + x
dv

dx
= G(v) ⇒ dv

G(v)− v
=
dx

x

Integrate and then substitute y/x for v.

1.5 Equations of form y’=G(ax+by)

These are straight forward. Use the substitution z = ax+ by.

1.6 Bernoulli Equations

An differential equation is called Bernoulli if it has the form

y′ + P (t)y = Q(t)yn (7)

for some n a real number. This differential equation gets a special name because we can transform (7) into
a linear equation by the substitution

v = y1−n,
1

1− n
dv

dt
= y−n

dy

dt

The power of this substitution is noticeable when we multiply (7) by y−n.

y−ny′ + P (t)y1−n = Q(t) ⇒ 1

1− n
dv

dt
+ P (t)v = Q(t)

An integrating factor will usually finish these up but be sure to have the solution in the original variables.

1.7 Linear Coefficients

These equations adopt a more relaxed appearance than equation (4),

(a1x+ b1y + c1)dx+ (a2x+ b2y + c2)dy = 0 (8)

We first consider the case where a1b2 = a2b1. If this is the case, let z = a1x+ b1y and z′ = a1 + b1y
′. Then

equation (8) becomes
1

b1
(z′ − a1) = − z + c1

b1
b2
z + c2

in which we can use technique 1.5 to wrap it up. Secondly, consider the case where a1b2 6= a2b1 and
c1 = c2 = 0. Then we may rewrite equation (8)

y′ = −a1 + b1(y/x)

a2 + b2(y/x)
(9)

3



and use the substitution to v = y/x to finish this up. The previous substitutions only introduced one new
variable to replace y. But now we will transform both the independent variable x and dependent y. The
motivation of this substitution is to make equation (8) “look like” equation (9), even if either constants c1
or c2 are nonzero. With this in mind, we will introduce the substitutions

x = u+ h and y = v + k

where the constants h, k will act as “buffers” or “corrections” to make the constants after substituting zero.
Substituting gives

(a1u+ b1y + (a1h+ b1k + c1))dx+ (a2u+ b2y + (a2h+ b2k + c2))dy = 0

We would like to choose a particular pair of constants h and k such that

a1h+ b1k + c1 = 0

a2h+ b2k + c2 = 0

are simultaneously zero. In other words, we want the solution to(
a1 b1
a2 b2

)(
h
k

)
=

(
−c1
−c2

)
Notice that the condition a1b2 6= b1a2 in linear algebra terms means the determinant of this matrix is non-
zero, hence we indeed have the existence of a unique solution. Solving for h and k will give the differential
equation

dv

du
= −a1 + b1(v/u)

a2 + b2(v/u)

which does indeed look like equation (9).

2 Linear Second Order Equations

We now move onto equations of order 2. These are equations that are of the form

ay′′ + by′ + cy = f(t) (10)

where second order means a 6= 0.

2.1 Homogenous Equations

This is the simplest case of second order equations. This is where f(t) = 0 in equation (10) and we call these
equations homogenous. The substitution we will use is y = ert so that (10) becomes

ert(ar2 + br + c) = 0

Since ert is never zero for any t, we may divide by ert and what we are left with is called the auxiliary
equation associated to the homogenous equation. We may apply the quadratic formula to r2 + br+ c to find
suitable roots r1 and r2. There are three different cases for these roots.

Case 1 r1 and r2 are real and distinct. This gives that both y1(t) =r1t
e and y2(t) = er2t are roots to the

homogenous equation. Linear combinations of y1(t) and y2(t) form the family of solutions to the homogenous
equation. Therefore our general solution is

y(t) = c1e
r1t + c2e

r2t, c1, c2 ∈ R
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Case 2 r1 = r2. It is clear that y1(t) = er1 should be one solution and certainly y2(t) = er2 is just a
relabeling of y1. The second-order-ness of the equation suggests there should be a second linearly independent
solution. One way to obtain this solution is to use reduction of order which I won’t mention until later. The
real second solution is y2(t) = ter1t to give

y(t) = c1e
rt + c2te

rt c1, c2 ∈ R

You should check that this indeed is a solution to the homogenous equation when the auxiliary equation
gives only one root.

Case 3 r1 and r2 are complex conjugates. To fully understand whats going on in the background, one
should recall Euler’s formula which says eiθ = cos θ + i sin θ. The root r1 takes the form α + iβ, where r2
takes the form α− iβ. Then the solutions we obtain are e(α+iβ)t and e(α−iβ)t. Euler’s’ formula implies that
for either of these solutions, we must have that the real and imaginary parts of e(α+iβ)t are also solutions
to the homogenous equation. Thus the general solution takes the form

y(t) = c1e
αt cosβt+ c2e

αt sinβt, c1, c2 ∈ R

2.2 Nonhomogenous Equations

We now consider the monumental task of trying to classify the solutions of

ay′′ + by′ + cy = f(t) (11)

where f(t) may not necessarily be identically zero. Here we will employ two classes of differential equations
and give a corresponding particular solution (here particular means we will only muster up a solution that
does not encompass every other solution). Suppose our first class of equations takes the form

ay′′ + by′ + cy = Ctmert

where m ∈ Z≥0. Even though the RHS may not be identically zero, we will consider the associated homoge-
nous equation, ay′′ + by′ + cy = 0. Just as in 2.1, this gives an associated auxiliary equation. A particular
solution is

yp(t) = ts(Amt
m + · · ·+A1t+A0)ert,

where s denotes the multiplicity of r in the associated auxiliary equation ar2 + br + c = 0. To solve for
Am, ..., A0, we compute the first and second derivatives of yp, substitute y, y′, y′′ for yp, y

′
p, y
′′′
p respectively

into ay′′ + by′ + cy = Ctmert and solve for the constants. As a disclaimer the arithmetic for this procedure
is often miserable, so be very careful and take your time.

Suppose the second class of equationsi takes the form

ay′′ + by′ + cy =

{
Ctmeαt cosβt

Ctmeαt sinβt

where β 6= 0. Use the particular solution

yp(t) = ts(Amt
m + · · ·+A1t+A0)eαt cosβt+ ts(Bmt

m + · · ·+B1t+B)e
αt sinβt,

Use the same procedure as above to solve for what the constants Am, ..., A0, Bm, ..., B0 could be. As you
could imagine, the arithmetic for this one is even worse.

After covering these classes, we now move up to the general solution of the nonhomogenous equation
(11) when we already have a particular solution. These combine what was just introduced and homogenous
solutions. For a nonhomogenous equation (11), a general solution is

y(t) = yp(t) + c1y1(t) + c2y2(t) (12)
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where y1(t), y2(t) are solutions to the associated homogenous equation. Using linearity, one could show that
(12) is indeed a solution to (11).

2.3 Variation of Parameters

Sections 2.1 and 2.2 cover preliminary methods on how to tango with second order equations. Here, we’ll
introduce cleaner and more general machinery to produce a particular solution. Suppose we have the usual
suspect

ay′′ + by′ + cy = f(t) (13)

For the associated homogenous equation, we obtain the general solution yh(t) = c1y1(t) + c2y2(t) where the
h emphasizes the equation being homogenous. What we do is replace the constant coefficients c1 and c2
with v1(t) and v2(t) to give the function yp(t) = v1(t)y1(t) + v2(t)y2(t), where p denotes the particular-ness
and ‘elevation’ of our scope from homogenous to nonhomogenous. We will impose three conditions on the
functions yp(t), v1 and v2, one obvious and the other two not so obvious.

(i) The obvious condition is we want yp(t) to satisfy equation (13)

ay′′p + by′p + cyp = f(t)

after all we are looking for solutions to (13).

(ii) The second condition is to require

v′1y1 + v′2y2 = 0

The reasoning because if we get rid of the terms that involve the first derivative of v1 and v2, then we
won’t have to care about the second derivatives of v1 and v2. We would presumably obtain a larger
family of solutions to (13) but we are not that ambitious...yet.

Imposing these conditions give us the following set up

yp = v1y1 + v2y2

y′p = v1y
′
1 + v2y

′
2

y′′p = v′1y
′
1 + v1y

′′
1 + v′2y

′
2 + v2y

′′
2

Plugging in these values into (13) spit out

f = ay′′p + by′p + cyp

= a(v′1y
′
1 + v1y

′′
1 + v′2y

′
2 + v2y

′′
2 ) + b(v1y

′
1 + v2y

′
2) + c(v1y1 + v2y2)

= a(v′1y
′
1 + v′2y

′
2) + v1(ay′′1 + by′1 + cy1) + v2(ay′′2 + by′2 + cy2)

= a(v′1y
′
1 + v′2y

′
2)

where the last two terms in the second to last equality vanish since we first figured out that y1 and y2 were
solutions to the associated homogenous equation.

(iii) The last condition we impose is

y′1v
′
1 + y′2v

′
2 =

f

a

It obvious here that we need a 6= 0, or else we’d drop to the first order case.
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In practice, we really only focus on conditions (ii) and (iii) to sew together the particular solution as our
final answer. I will elaborate more on what to do once you come to (ii) and (iii). At this point, we know
what y1 and y2 and we are looking for v′1 and v′2. Condition (ii) implies

v′1 =
−y2v′2
y1

and substituting this into condition (iii) gives

f

a
= y′1

(
−y2v′2
y1

)
+ v′2y

′
2

= v′2

(
y′2 −

y′1y2
y1

)
Then we isolate the v′2 and integrate with respect to t to obtain v2 (don’t forget the +c2 !) Use condition
(ii) and integrate to obtain v1 (don’t forget the +c2 !!). Once you have the functions v1 and v2, substitute
them back into yp for your particular solution.

2.4 Existence & Uniqueness and IVP’s

Up until now, I’ve neglected EU and IVP’s so I will mention it here in the case for nonhomogenous second
order differential equations with variable coefficients. We have not discussed variable coefficients yet, only
constant coefficients so consider this is our first impressions with them.

Theorem Existence and Uniqueness of Solutions Suppose we are given continuous functions p(t), q(t) and
g(t) on (a, b) that contains a point t0. Then for any initial values Y0, Y1 ∈ R, there exists a unique solution
y(t) on (a, b) to the initial value problem

y′′(t) + p(t)y′(t) + q(t)y(t) = g(t), y(t0) = Y0, y
′(t0) = Y1

While having a theorem that tells us whether or not there exists a unique solution to an IVP is really
powerful, the theorem does not tell us how to construct the solution in a general sense.

2.5 Variable Coefficient Equations

Here we begin with a simple first swing at linear second order equation’s with variable coefficients. Suppose
we have the equation

at2y′′(t) + bty′(t) + cy = f(t) (14)

for a, b, c ∈ R. The equations of the form (14) are called Cauchy-Euler. We use the simple substitution
y = tr. Assuming t > 0, we substitute to transform (14) into

tr(ar2 + (b− a)r + c) = 0⇒ ar2 + (b− a)r + c = 0

We call this the associated characteristic equation. To solve for r, we use the quadratic formula and unsur-
prisingly there are three cases.

Case 1 Roots r1 and r2 are real and distinct. Then this produces two linearly independent solutions

y1(t) = tr1 , y2(t) = tr2

Case 2 Roots are equal. Then this produces the two linearly independent solutions

y1(t) = tr, y2(t) = tr ln(t)
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Case 3 Roots are complex conjugates. Let r = α+ iβ. Then

tr = er ln(t) = tαeiβ ln t = tα(cosβ ln t+ i sinβ ln t)

As in Section 2.1, we obtain the two linearly independent solutions

y1(t) = tα cosβ ln t, y2(t) = tα sinβ ln t

2.6 A Note on Linear Independence

Something that should be in the back of our minds is if solutions y1 and y2 for a differential equation are
linearly dependent. If they are linearly dependent, then we really only have one solution.

A quick (and stripped down) way to verify if y1 and y2 are linearly independent for a homogenous equation

y′′(t) + p(t)y′(t) + q(t)y(t) = 0 (15)

is to compute the Wronksian. Let I be an interval where p(t) and q(t) are simultaneously continuous. If the
Wronkskian

det

(
y1(t) y2(t)
y′1(t) y′2(t)

)
= 0

for any t ∈ I, then y1 and y2 are linearly dependent. We could have also formulated the statement in terms
of the contrapositive if you’d prefer that.

Alternatively if you have a non-zero solution to (13), call it y1(t), and you would like to produce a second
solution y2 linearly independent to y1, use the reduction of order formula

y2(t) = y1(t)

∫
e−

∫
p(t)dt

y1(t)2
dt
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