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A pseudo-reflection is a linear map r : V → V that fixes a
hyperplane pointwise and has finite order.
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a pseudo-reflection r ←→ the corresponding matrix R has

Eigenspace E1 = {v ∈ V |Rv = v} has codimension 1.

Rk = In for some k ∈ N

Definition

A linear group G ⊆ GL(V ) is a complex reflection group if

V is a vector space over C
G is finite, and

G is generated by pseudo-reflections.

Sebastian Calvo (Towson) February 24, 2025 3 / 23



a pseudo-reflection r ←→ the corresponding matrix R has

Eigenspace E1 = {v ∈ V |Rv = v} has codimension 1.

Rk = In for some k ∈ N

Definition

A linear group G ⊆ GL(V ) is a complex reflection group if

V is a vector space over C
G is finite, and

G is generated by pseudo-reflections.

Sebastian Calvo (Towson) February 24, 2025 3 / 23



Where do complex reflection groups exist?
Shapes

Pencil of curves
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The icosahedral symmetry group
G = A5 × Z2
The group G has order |G | = 120 and 15 reflections. The group G is
generated by the reflections1 0 0

0 1 0
0 0 −1

 ,

1 0 0
0 −1 0
0 0 1

 ,
−1
2

ϕ− 1 ϕ 1
ϕ −1 ϕ− 1
1 ϕ− 1 −ϕ

 .
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z = 0, y = 0, x + ϕy + ϕ2z = 0

There are 15 reflecting hyperplanes, each with its defining polynomial.
Take ψ15 to be the product of the 15 defining polynomials.
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After projectivization to P2, ψ15 = 0 defines a line configuration A.

There are 15 double points, 10 triple points, and 6 quintuple points.
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Question

For fixed m ∈ Z+, what is the minimal degree d of a curve that
passes through each of the 31(= 15 + 10 + 6) singularities of A with
multiplicity at least m?
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The defining polynomial ψ15 of degree d = 15 of the line
configuration A has multiplicity at least m = 2 at each singularity.

Therefore ψ15 gives a ratio of d
m
= 15

2
.

Can this be improved?

Theorem (C ’24)

If C is a curve of degree d having multiplicity at least m at the 31
singularities of A, then d

m
≥ 11

2
.This is sharp: there exists a curve of

degree 66 with multiplicity 12 at the singularities.
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Algebraic notation

Points and ideals

For each singularity p ∈ A, we have an ideal Ip ⊆ C[x , y , z ]. For
example,

p = [1 : 1 : 1]←→ Ip = ⟨x − z , y − z⟩

Polynomials in Ip correspond to curves passing through the point p.

Multiplicity

For a singularity p ∈ A, the m-th power of an ideal Imp ⊆ C[x , y , z ] is
the set of curves passing through p with multiplicity m.
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Notation

Let I = ∩i Ipi be ideal of a collection of points {pi} ⊆ P2.

α(I ) = min{deg(f )|f ∈ I is non-constant}.
I (m) =

⋂
i I

m
pi
. Curves passing through each pi with multiplicity m.

d = α(I (m)).

The Waldschmidt constant of I is defined to be

α̂(I ) = lim
m→∞

α(I (m))

m

Question (Restated)

Compute α̂(IA), where IA is the defining ideal of the 31 points of A.
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Ring of G -invariant polynomials

The ring is a C-algebra generated by ψ2, ψ6, and ψ10.

ψ2 = x2 + y 2 + z2 preserves distance.

6 pairs of opposite vertices → 6 planes that slice icosahedron in
half. Let ψ6 be the product of the 6 defining linear forms.

10 pairs of opposite faces → 10 planes that slice icosahedron in
half. Let ψ10 be the product of the 10 defining linear forms.
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Can be used to construct curves with vanishing conditions

ψ6, ψ10 pass through each double point with multiplicity 2.

ψ′
6 = ψ3

2 − 27ϕ2ψ6

passes through each triple point with multiplicity 2.

ψ30 = 2ψ3
10 + ψ2

2ψ6ψ
2
10 + 2ψ2ψ

2
6ψ

′
6ψ10 + ψ3

6(ψ
′
6)

2

passes through each double and triple point with multiplicity 6
and each quintuple point with multiplicity 2.

ψ2
15 passes through each point with multiplicity at least 4.

A particular curve

The curve D given by
ψ2
15ψ6ψ30 = 0

has degree 66 and multiplicity at least 12 at each singularity.

Sebastian Calvo (Towson) February 24, 2025 13 / 23



Can be used to construct curves with vanishing conditions

ψ6, ψ10 pass through each double point with multiplicity 2.

ψ′
6 = ψ3

2 − 27ϕ2ψ6

passes through each triple point with multiplicity 2.

ψ30 = 2ψ3
10 + ψ2

2ψ6ψ
2
10 + 2ψ2ψ

2
6ψ

′
6ψ10 + ψ3

6(ψ
′
6)

2

passes through each double and triple point with multiplicity 6
and each quintuple point with multiplicity 2.

ψ2
15 passes through each point with multiplicity at least 4.

A particular curve

The curve D given by
ψ2
15ψ6ψ30 = 0

has degree 66 and multiplicity at least 12 at each singularity.

Sebastian Calvo (Towson) February 24, 2025 13 / 23



Can be used to construct curves with vanishing conditions

ψ6, ψ10 pass through each double point with multiplicity 2.

ψ′
6 = ψ3

2 − 27ϕ2ψ6

passes through each triple point with multiplicity 2.

ψ30 = 2ψ3
10 + ψ2

2ψ6ψ
2
10 + 2ψ2ψ

2
6ψ

′
6ψ10 + ψ3

6(ψ
′
6)

2

passes through each double and triple point with multiplicity 6
and each quintuple point with multiplicity 2.

ψ2
15 passes through each point with multiplicity at least 4.

A particular curve

The curve D given by
ψ2
15ψ6ψ30 = 0

has degree 66 and multiplicity at least 12 at each singularity.

Sebastian Calvo (Towson) February 24, 2025 13 / 23



Can be used to construct curves with vanishing conditions

ψ6, ψ10 pass through each double point with multiplicity 2.

ψ′
6 = ψ3

2 − 27ϕ2ψ6

passes through each triple point with multiplicity 2.

ψ30 = 2ψ3
10 + ψ2

2ψ6ψ
2
10 + 2ψ2ψ

2
6ψ

′
6ψ10 + ψ3

6(ψ
′
6)

2

passes through each double and triple point with multiplicity 6
and each quintuple point with multiplicity 2.

ψ2
15 passes through each point with multiplicity at least 4.

A particular curve

The curve D given by
ψ2
15ψ6ψ30 = 0

has degree 66 and multiplicity at least 12 at each singularity.

Sebastian Calvo (Towson) February 24, 2025 13 / 23



Can be used to construct curves with vanishing conditions

ψ6, ψ10 pass through each double point with multiplicity 2.

ψ′
6 = ψ3

2 − 27ϕ2ψ6

passes through each triple point with multiplicity 2.

ψ30 = 2ψ3
10 + ψ2

2ψ6ψ
2
10 + 2ψ2ψ

2
6ψ

′
6ψ10 + ψ3

6(ψ
′
6)

2

passes through each double and triple point with multiplicity 6
and each quintuple point with multiplicity 2.

ψ2
15 passes through each point with multiplicity at least 4.

A particular curve

The curve D given by
ψ2
15ψ6ψ30 = 0

has degree 66 and multiplicity at least 12 at each singularity.

Sebastian Calvo (Towson) February 24, 2025 13 / 23



Theorem (C ’24)

Let IA be the defining ideal of the 31 singularities of A. Then

α̂(IA) =
11

2
.

Proof

We can construct a family of curves Dk of degree 55k + 2 with
multiplicity 10k at each of the 31 points.

α̂(IA) = lim
m→∞

α(I
(m)
A )

m
≤ lim

k→∞

55k + 2

10k
=

11

2
.

If an irreducible curve of degree d with multiplicity m at the 31
points has d

m
< 11

2
, then the curve must be an irreducible

component of D. But none of the irreducible components of
ψ15, ψ6 and ψ30 satisfy d

m
< 11

2
.
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The Hessian group G = ASL(2, 3)× Z3

The Hesse pencil is the one-dimensional linear system of plane cubic
curves given by

λ(x3 + y 3 + z3) + µxyz = 0, [λ : µ] ∈ P1.

The Hessian group G is the group that preserves the Hesse pencil.
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The Hessian group G

G has order 648 and 12 pseudo-reflections.

G admits a configuration B of 12 lines.
These 12 lines intersect at 21 points.

▶ 9 quadruple points (the base-points of the pencil)
▶ 12 double points

Theorem (C ’24)

Let IB be the defining ideal of 21 singularities of B. Then

α̂(IB) =
9

2
.

Sebastian Calvo (Towson) February 24, 2025 16 / 23



The Hessian group G

G has order 648 and 12 pseudo-reflections.

G admits a configuration B of 12 lines.

These 12 lines intersect at 21 points.
▶ 9 quadruple points (the base-points of the pencil)
▶ 12 double points

Theorem (C ’24)

Let IB be the defining ideal of 21 singularities of B. Then

α̂(IB) =
9

2
.

Sebastian Calvo (Towson) February 24, 2025 16 / 23



The Hessian group G

G has order 648 and 12 pseudo-reflections.

G admits a configuration B of 12 lines.
These 12 lines intersect at 21 points.

▶ 9 quadruple points (the base-points of the pencil)
▶ 12 double points

Theorem (C ’24)

Let IB be the defining ideal of 21 singularities of B. Then

α̂(IB) =
9

2
.

Sebastian Calvo (Towson) February 24, 2025 16 / 23



The Hessian group G

G has order 648 and 12 pseudo-reflections.

G admits a configuration B of 12 lines.
These 12 lines intersect at 21 points.

▶ 9 quadruple points (the base-points of the pencil)
▶ 12 double points

Theorem (C ’24)

Let IB be the defining ideal of 21 singularities of B. Then

α̂(IB) =
9

2
.

Sebastian Calvo (Towson) February 24, 2025 16 / 23



Proof

There are G -invariant polynomials ϕ6, ϕ9, ϕ12.

There is a curve C defined by

ϕ4
6 − 2ϕ2

6ϕ12 − 432ϕ6ϕ
2
9 + ϕ2

12 = 0.

of degree 24 that vanishes to multiplicity 4 at the quadruple
points and multiplicity 6 at the double points.

If an irreducible curve of degree d with multiplicity at least m at
the 21 points has d

m
< 9

2
, then the curve must be an irreducible

component of C but the curve C is already irreducible and has
d
m
> 9

2
.

There is a family of curves of degree 36k with multiplicity 8k at
the 21 points.

α̂(IB) = lim
m→∞

α(I
(m)
B )

m
≤ lim

k→∞

36k

8k
=

9

2
.
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Containment Problem
When are I (n) and I n? equal?

Let I be a defining ideal of a finite set of points in P2.

I n ⊆ I (n) by definition.

I (n) may or may not be contained in I n.

Example of I (2) ̸⊆ I 2

Let p1, p2, p3 be non-collinear points in P2 and I = Ip1 ∩ Ip2 ∩ Ip3 .

Let L = 0 be given by the union of the 3 lines connecting each
pair of points.

The curve L = 0 is degree 3 and multiplicity 2 at each point so
L ∈ I (2) and α(I (2)) = 3.

But α(I 2) = 4.

I (2) ̸⊆ I 2.
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Let L = 0 be given by the union of the 3 lines connecting each
pair of points.

The curve L = 0 is degree 3 and multiplicity 2 at each point so
L ∈ I (2) and α(I (2)) = 3.

But α(I 2) = 4.

I (2) ̸⊆ I 2.
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Resurgence

The resurgence of an ideal I is defined to be

ρ(I ) = sup
{m

r

∣∣I (m) ̸⊆ I r
}
.

Bounds

By Ein-Lazarsfeld-Smith, we have the bound 1 < ρ(I ) ≤ 2.

I (4) ⊆ I 2.
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Theorem (C ’24)

Let IA be the defining ideal of the 31 singularities of A. Then

ρ(IA) = 9/8.

Interpretation

This is the maximal ratio where containment fails. We have

I
(9)
A ̸⊆ I 8A

and if 9
8
< m

r
, then

I
(m)
A ⊆ I rA.

Theorem (C ’24)

Let IB be the defining ideal of the 21 singularities of B. Then

ρ(IB) = 8/7.
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Proof (of ρ(IA) = 9/8).

We can show the failure of containment I (9) ̸⊆ I 8.

Suppose that 9
8
< m

r
and assume for contradiction that I

(m)
A ̸⊆ I rA.

Bocci-Harbourne says the failure of containment I
(m)
A ̸⊆ I rA

implies the last inequality

11

2
m = mα̂(IA) ≤ α(I

(m)
A ) ≤ 6r + 4.

Then we obtain the system of inequalities

11m − 8 ≤ 12r <
96

9
m.

Finitely many pairs (m, r) satisfy this system.
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Proof cont.

But the finitely many containments actually do hold except for
m = 9 and r = 8.

Therefore no such m
r
> 9

8
exists such that I

(m)
A ̸⊆ I rA and

ρ(IA) = 9/8.
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Thank you!
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