Waldschmidt Constant of Complex Reflection Groups

Sebastian Calvo Towson University A **pseudo-reflection** is a linear map $r: V \rightarrow V$ that fixes a hyperplane pointwise and has finite order.

a pseudo-reflection $r \leftrightarrow$ the corresponding matrix R has

- Eigenspace $E_1 = \{v \in V | Rv = v\}$ has codimension 1.
- $R^k = I_n$ for some $k \in \mathbb{N}$

a pseudo-reflection $r \leftrightarrow$ the corresponding matrix R has

- Eigenspace $E_1 = \{v \in V | Rv = v\}$ has codimension 1.
- $R^k = I_n$ for some $k \in \mathbb{N}$

Definition

A linear group $G \subseteq GL(V)$ is a **complex reflection group** if

- V is a vector space over $\mathbb C$
- G is finite, and
- G is generated by pseudo-reflections.

Where do complex reflection groups exist?

Shapes

• Pencil of curves

The icosahedral symmetry group $G = A_5 \times \mathbb{Z}_2$

The group *G* has order |G| = 120 and 15 reflections. The group *G* is generated by the reflections

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix}, \quad \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \quad \frac{-1}{2} \begin{pmatrix} \phi - 1 & \phi & 1 \\ \phi & -1 & \phi - 1 \\ 1 & \phi - 1 & -\phi \end{pmatrix}.$$

The icosahedral symmetry group $G = A_5 \times \mathbb{Z}_2$

The group G has order |G| = 120 and 15 reflections. The group G is generated by the reflections

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix}, \quad \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \quad \frac{-1}{2} \begin{pmatrix} \phi - 1 & \phi & 1 \\ \phi & -1 & \phi - 1 \\ 1 & \phi - 1 & -\phi \end{pmatrix}.$$

z = 0, y = 0, $x + \phi y + \phi^2 z = 0$

z = 0, y = 0, $x + \phi y + \phi^2 z = 0$

There are 15 reflecting hyperplanes, each with its defining polynomial.

$$z = 0,$$
 $y = 0,$ $x + \phi y + \phi^2 z = 0$

There are 15 reflecting hyperplanes, each with its defining polynomial. Take ψ_{15} to be the product of the 15 defining polynomials.

After projectivization to \mathbb{P}^2 , $\psi_{15} = 0$ defines a **line configuration** \mathcal{A} .

After projectivization to \mathbb{P}^2 , $\psi_{15} = 0$ defines a **line configuration** \mathcal{A} .

There are 15 double points, 10 triple points, and 6 quintuple points.

Question

For fixed $m \in \mathbb{Z}^+$, what is the minimal degree d of a curve that passes through each of the 31(=15+10+6) singularities of \mathcal{A} with multiplicity at least m?

Therefore ψ_{15} gives a ratio of $\frac{d}{m} = \frac{15}{2}$.

Therefore ψ_{15} gives a ratio of $\frac{d}{m} = \frac{15}{2}$. Can this be improved?

Therefore ψ_{15} gives a ratio of $\frac{d}{m} = \frac{15}{2}$. Can this be improved?

Theorem (C '24)

If C is a curve of degree d having multiplicity at least m at the 31 singularities of A, then $\frac{d}{m} \geq \frac{11}{2}$.

Therefore ψ_{15} gives a ratio of $\frac{d}{m} = \frac{15}{2}$. Can this be improved?

Theorem (C '24)

If C is a curve of degree d having multiplicity at least m at the 31 singularities of A, then $\frac{d}{m} \geq \frac{11}{2}$. This is sharp: there exists a curve of degree 66 with multiplicity 12 at the singularities.

Algebraic notation

Points and ideals

For each singularity $p \in A$, we have an ideal $I_p \subseteq \mathbb{C}[x, y, z]$. For example,

$$p = [1:1:1] \longleftrightarrow I_p = \langle x - z, y - z \rangle$$

Algebraic notation

Points and ideals

For each singularity $p \in A$, we have an ideal $I_p \subseteq \mathbb{C}[x, y, z]$. For example,

$$p = [1:1:1] \longleftrightarrow I_p = \langle x - z, y - z \rangle$$

Polynomials in I_p correspond to curves passing through the point p.

Algebraic notation

Points and ideals

For each singularity $p \in A$, we have an ideal $I_p \subseteq \mathbb{C}[x, y, z]$. For example,

$$p = [1:1:1] \longleftrightarrow I_p = \langle x - z, y - z \rangle$$

Polynomials in I_p correspond to curves passing through the point p.

Multiplicity

For a singularity $p \in A$, the *m*-th power of an ideal $I_p^m \subseteq \mathbb{C}[x, y, z]$ is the set of curves passing through p with multiplicity m.

Let $I = \bigcap_i I_{p_i}$ be ideal of a collection of points $\{p_i\} \subseteq \mathbb{P}^2$.

Let $I = \bigcap_i I_{p_i}$ be ideal of a collection of points $\{p_i\} \subseteq \mathbb{P}^2$. • $\alpha(I) = \min\{\deg(f) | f \in I \text{ is non-constant}\}.$

Let I = ∩_iI_{p_i} be ideal of a collection of points {p_i} ⊆ ℙ².
α(I) = min{deg(f)|f ∈ I is non-constant}.
I^(m) = ∩_iI^m_{p_i}.

Let
$$I = \bigcap_i I_{p_i}$$
 be ideal of a collection of points $\{p_i\} \subseteq \mathbb{P}^2$.

•
$$\alpha(I) = \min\{\deg(f) | f \in I \text{ is non-constant}\}.$$

• $I^{(m)} = \bigcap_i I_{p_i}^m$. Curves passing through each p_i with multiplicity m.

- Let $I = \bigcap_i I_{p_i}$ be ideal of a collection of points $\{p_i\} \subseteq \mathbb{P}^2$.
 - $\alpha(I) = \min\{\deg(f) | f \in I \text{ is non-constant}\}.$
 - $I^{(m)} = \bigcap_i I_{p_i}^m$. Curves passing through each p_i with multiplicity m.
 - $d = \alpha(I^{(m)}).$

- Let $I = \bigcap_i I_{p_i}$ be ideal of a collection of points $\{p_i\} \subseteq \mathbb{P}^2$.
 - $\alpha(I) = \min\{\deg(f) | f \in I \text{ is non-constant}\}.$
 - *I*^(m) = ∩_i *I*^m_{pi}. Curves passing through each *p_i* with multiplicity *m*.
 d = α(*I*^(m)).

The Waldschmidt constant of / is defined to be

$$\widehat{\alpha}(I) = \lim_{m \to \infty} \frac{\alpha(I^{(m)})}{m}$$

Question (Restated) Compute $\hat{\alpha}(I_A)$, where I_A is the defining ideal of the 31 points of \mathcal{A} .

The ring is a \mathbb{C} -algebra generated by ψ_2, ψ_6 , and ψ_{10} .

• $\psi_2 = x^2 + y^2 + z^2$ preserves distance.

The ring is a \mathbb{C} -algebra generated by ψ_2, ψ_6 , and ψ_{10} .

• $\psi_2 = x^2 + y^2 + z^2$ preserves distance.

• 6 pairs of opposite vertices \rightarrow 6 planes that slice icosahedron in half. Let ψ_6 be the product of the 6 defining linear forms.

The ring is a \mathbb{C} -algebra generated by ψ_2, ψ_6 , and ψ_{10} .

• $\psi_2 = x^2 + y^2 + z^2$ preserves distance.

- 6 pairs of opposite vertices \rightarrow 6 planes that slice icosahedron in half. Let ψ_6 be the product of the 6 defining linear forms.
- 10 pairs of opposite faces \rightarrow 10 planes that slice icosahedron in half. Let ψ_{10} be the product of the 10 defining linear forms.

The ring is a \mathbb{C} -algebra generated by ψ_2, ψ_6 , and ψ_{10} .

- $\psi_2 = x^2 + y^2 + z^2$ preserves distance.
- 6 pairs of opposite vertices \rightarrow 6 planes that slice icosahedron in half. Let ψ_6 be the product of the 6 defining linear forms.
- 10 pairs of opposite faces \rightarrow 10 planes that slice icosahedron in half. Let ψ_{10} be the product of the 10 defining linear forms.

Can be used to construct curves with vanishing conditions

• ψ_6, ψ_{10} pass through each double point with multiplicity 2.

Can be used to construct curves with vanishing conditions

• ψ_6, ψ_{10} pass through each double point with multiplicity 2.

$$\psi_6' = \psi_2^3 - 27\phi^2\psi_6$$

passes through each triple point with multiplicity 2.

٢

Can be used to construct curves with vanishing conditions
ψ₆, ψ₁₀ pass through each double point with multiplicity 2.

$$\psi_6' = \psi_2^3 - 27\phi^2\psi_6$$

passes through each triple point with multiplicity 2.

$$\psi_{30} = 2\psi_{10}^3 + \psi_2^2\psi_6\psi_{10}^2 + 2\psi_2\psi_6^2\psi_6'\psi_{10} + \psi_6^3(\psi_6')^2$$

passes through each double and triple point with multiplicity 6 and each quintuple point with multiplicity 2.

٢

Can be used to construct curves with vanishing conditions • ψ_6 , ψ_{10} pass through each double point with multiplicity 2.

$$\psi_6' = \psi_2^3 - 27\phi^2\psi_6$$

passes through each triple point with multiplicity 2.

$$\psi_{30} = 2\psi_{10}^3 + \psi_2^2\psi_6\psi_{10}^2 + 2\psi_2\psi_6^2\psi_6'\psi_{10} + \psi_6^3(\psi_6')^2$$

passes through each double and triple point with multiplicity 6 and each quintuple point with multiplicity 2.

• ψ_{15}^2 passes through each point with multiplicity at least 4.

٢

Can be used to construct curves with vanishing conditions
ψ₆, ψ₁₀ pass through each double point with multiplicity 2.

$$\psi_6' = \psi_2^3 - 27\phi^2\psi_6$$

passes through each triple point with multiplicity 2.

$$\psi_{30} = 2\psi_{10}^3 + \psi_2^2\psi_6\psi_{10}^2 + 2\psi_2\psi_6^2\psi_6'\psi_{10} + \psi_6^3(\psi_6')^2$$

passes through each double and triple point with multiplicity 6 and each quintuple point with multiplicity 2.

• ψ_{15}^2 passes through each point with multiplicity at least 4.

A particular curve

٢

The curve D given by

$$\psi_{15}^2 \psi_6 \psi_{30} = 0$$

has degree 66 and multiplicity at least 12 at each singularity.

Let I_A be the defining ideal of the 31 singularities of A. Then

$$\widehat{\alpha}(I_{\mathcal{A}}) = \frac{11}{2}.$$

Let I_A be the defining ideal of the 31 singularities of A. Then

$$\widehat{\alpha}(I_{\mathcal{A}}) = \frac{11}{2}.$$

Proof

• We can construct a **family of curves** D_k of degree 55k + 2 with multiplicity 10k at each of the 31 points.

$$\widehat{\alpha}(I_{\mathcal{A}}) = \lim_{m \to \infty} \frac{\alpha(I_{\mathcal{A}}^{(m)})}{m} \leq \lim_{k \to \infty} \frac{55k+2}{10k} = \frac{11}{2}$$

Let I_A be the defining ideal of the 31 singularities of A. Then

$$\widehat{\alpha}(I_{\mathcal{A}}) = \frac{11}{2}.$$

Proof

• We can construct a **family of curves** D_k of degree 55k + 2 with multiplicity 10k at each of the 31 points.

$$\widehat{\alpha}(I_{\mathcal{A}}) = \lim_{m \to \infty} \frac{\alpha(I_{\mathcal{A}}^{(m)})}{m} \leq \lim_{k \to \infty} \frac{55k+2}{10k} = \frac{11}{2}$$

• If an irreducible curve of degree d with multiplicity m at the 31 points has $\frac{d}{m} < \frac{11}{2}$, then the curve must be an irreducible component of D. But none of the irreducible components of ψ_{15}, ψ_6 and ψ_{30} satisfy $\frac{d}{m} < \frac{11}{2}$.

The Hessian group $G = ASL(2,3) \times \mathbb{Z}_3$

The Hesse pencil is the one-dimensional linear system of plane cubic curves given by

$$\lambda(x^3+y^3+z^3)+\mu xyz=0, \qquad [\lambda:\mu]\in \mathbb{P}^1.$$

The Hessian group $G = ASL(2,3) \times \mathbb{Z}_3$

The Hesse pencil is the one-dimensional linear system of plane cubic curves given by

$$\lambda(x^3+y^3+z^3)+\mu xyz=0, \qquad [\lambda:\mu]\in \mathbb{P}^1.$$

The Hessian group G is the group that preserves the Hesse pencil.

• G has order 648 and 12 pseudo-reflections.

- G has order 648 and 12 pseudo-reflections.
- G admits a configuration \mathcal{B} of 12 lines.

- G has order 648 and 12 pseudo-reflections.
- G admits a configuration $\mathcal B$ of 12 lines.
- These 12 lines intersect at 21 points.
 - 9 quadruple points (the base-points of the pencil)
 - 12 double points

- G has order 648 and 12 pseudo-reflections.
- G admits a configuration \mathcal{B} of 12 lines.
- These 12 lines intersect at 21 points.
 - 9 quadruple points (the base-points of the pencil)
 - 12 double points

Theorem (C '24)

Let $I_{\mathcal{B}}$ be the defining ideal of 21 singularities of \mathcal{B} . Then

$$\widehat{\alpha}(I_{\mathcal{B}})=rac{9}{2}.$$

• There are *G*-invariant polynomials $\phi_6, \phi_9, \phi_{12}$.

- There are *G*-invariant polynomials $\phi_6, \phi_9, \phi_{12}$.
- \bullet There is a curve ${\mathcal C}$ defined by

$$\phi_6^4 - 2\phi_6^2\phi_{12} - 432\phi_6\phi_9^2 + \phi_{12}^2 = 0.$$

of degree 24 that vanishes to multiplicity 4 at the quadruple points and multiplicity 6 at the double points.

- There are *G*-invariant polynomials $\phi_6, \phi_9, \phi_{12}$.
- There is a curve ${\mathcal C}$ defined by

$$\phi_6^4 - 2\phi_6^2\phi_{12} - 432\phi_6\phi_9^2 + \phi_{12}^2 = 0.$$

of degree 24 that vanishes to multiplicity 4 at the quadruple points and multiplicity 6 at the double points.

• If an irreducible curve of degree d with multiplicity at least m at the 21 points has $\frac{d}{m} < \frac{9}{2}$, then the curve must be an irreducible component of C but the curve C is already irreducible and has $\frac{d}{m} > \frac{9}{2}$.

- There are G-invariant polynomials $\phi_6, \phi_9, \phi_{12}$.
- \bullet There is a curve ${\mathcal C}$ defined by

$$\phi_6^4 - 2\phi_6^2\phi_{12} - 432\phi_6\phi_9^2 + \phi_{12}^2 = 0.$$

of degree 24 that vanishes to multiplicity 4 at the quadruple points and multiplicity 6 at the double points.

- If an irreducible curve of degree d with multiplicity at least m at the 21 points has $\frac{d}{m} < \frac{9}{2}$, then the curve must be an irreducible component of C but the curve C is already irreducible and has $\frac{d}{m} > \frac{9}{2}$.
- There is a family of curves of degree 36k with multiplicity 8k at the 21 points.

$$\widehat{\alpha}(I_{\mathcal{B}}) = \lim_{m \to \infty} \frac{\alpha(I_{\mathcal{B}}^{(m)})}{m} \leq \lim_{k \to \infty} \frac{36k}{8k} = \frac{9}{2}.$$

When are $I^{(n)}$ and I^n ? equal?

Let *I* be a defining ideal of a finite set of points in P². *Iⁿ* ⊂ *I*⁽ⁿ⁾ by definition.

When are $I^{(n)}$ and I^n ? equal?

Let I be a defining ideal of a finite set of points in \mathbb{P}^2 .

- $I^n \subseteq I^{(n)}$ by definition.
- $I^{(n)}$ may or may not be contained in I^n .

When are $I^{(n)}$ and I^n ? equal?

Let I be a defining ideal of a finite set of points in \mathbb{P}^2 .

- $I^n \subseteq I^{(n)}$ by definition.
- $I^{(n)}$ may or may not be contained in I^n .

Example of $I^{(2)} \not\subseteq I^2$

When are $I^{(n)}$ and I^n ? equal?

Let I be a defining ideal of a finite set of points in \mathbb{P}^2 .

- $I^n \subseteq I^{(n)}$ by definition.
- $I^{(n)}$ may or may not be contained in I^n .

Example of $I^{(2)} \not\subseteq I^2$

Let p_1, p_2, p_3 be non-collinear points in \mathbb{P}^2 and $I = I_{p_1} \cap I_{p_2} \cap I_{p_3}$.

• Let *L* = 0 be given by the union of the 3 lines connecting each pair of points.

When are $I^{(n)}$ and I^n ? equal?

Let I be a defining ideal of a finite set of points in \mathbb{P}^2 .

- $I^n \subseteq I^{(n)}$ by definition.
- $I^{(n)}$ may or may not be contained in I^n .

Example of $I^{(2)} \not\subseteq I^2$

- Let *L* = 0 be given by the union of the 3 lines connecting each pair of points.
- The curve L = 0 is degree 3 and multiplicity 2 at each point so $L \in I^{(2)}$ and $\alpha(I^{(2)}) = 3$.

When are $I^{(n)}$ and I^n ? equal?

Let I be a defining ideal of a finite set of points in \mathbb{P}^2 .

- $I^n \subseteq I^{(n)}$ by definition.
- $I^{(n)}$ may or may not be contained in I^n .

Example of $I^{(2)} \not\subseteq I^2$

- Let *L* = 0 be given by the union of the 3 lines connecting each pair of points.
- The curve L = 0 is degree 3 and multiplicity 2 at each point so $L \in I^{(2)}$ and $\alpha(I^{(2)}) = 3$.
- But $\alpha(I^2) = 4$.

When are $I^{(n)}$ and I^n ? equal?

Let I be a defining ideal of a finite set of points in \mathbb{P}^2 .

- $I^n \subseteq I^{(n)}$ by definition.
- $I^{(n)}$ may or may not be contained in I^n .

Example of $I^{(2)} \not\subseteq I^2$

- Let *L* = 0 be given by the union of the 3 lines connecting each pair of points.
- The curve L = 0 is degree 3 and multiplicity 2 at each point so $L \in I^{(2)}$ and $\alpha(I^{(2)}) = 3$.
- But $\alpha(I^2) = 4$.
- $I^{(2)} \not\subseteq I^2$.

Resurgence

The resurgence of an ideal I is defined to be

$$\rho(I) = \sup\left\{\frac{m}{r} \middle| I^{(m)} \not\subseteq I^r\right\}.$$

Resurgence

The **resurgence** of an ideal *I* is defined to be

$$\rho(I) = \sup\left\{\frac{m}{r} \middle| I^{(m)} \not\subseteq I^r\right\}.$$

Bounds

By Ein-Lazarsfeld-Smith, we have the bound $1 < \rho(I) \le 2$. • $I^{(4)} \subseteq I^2$.

Let I_A be the defining ideal of the 31 singularities of A. Then

 $\rho(I_{\mathcal{A}})=9/8.$

Let I_A be the defining ideal of the 31 singularities of A. Then

 $\rho(I_{\mathcal{A}}) = 9/8.$

Interpretation

This is the maximal ratio where containment fails. We have

$$I_{\mathcal{A}}^{(9)} \not\subseteq I_{\mathcal{A}}^{8}$$

and if $\frac{9}{8} < \frac{m}{r}$, then

$$I_{\mathcal{A}}^{(m)} \subseteq I_{\mathcal{A}}^{r}.$$

Let I_A be the defining ideal of the 31 singularities of A. Then

 $\rho(I_{\mathcal{A}})=9/8.$

Interpretation

This is the maximal ratio where containment fails. We have

$$I_{\mathcal{A}}^{(9)} \not\subseteq I_{\mathcal{A}}^{8}$$

and if $\frac{9}{8} < \frac{m}{r}$, then

$$I_{\mathcal{A}}^{(m)} \subseteq I_{\mathcal{A}}^{r}.$$

Theorem (C '24)

Let $I_{\mathcal{B}}$ be the defining ideal of the 21 singularities of \mathcal{B} . Then

$$\rho(I_{\mathcal{B}})=8/7.$$

Sebastian Calvo (Towson)

- We can show the failure of containment $I^{(9)} \not\subseteq I^8$.
- Suppose that $\frac{9}{8} < \frac{m}{r}$ and assume for contradiction that $I_{\mathcal{A}}^{(m)} \not\subseteq I_{\mathcal{A}}^r$.

- We can show the failure of containment $I^{(9)} \not\subseteq I^8$.
- Suppose that $\frac{9}{8} < \frac{m}{r}$ and assume for contradiction that $I_{\mathcal{A}}^{(m)} \not\subseteq I_{\mathcal{A}}^r$.
- Bocci-Harbourne says the failure of containment I^(m)_A ⊈ I^r_A implies the last inequality

$$\frac{11}{2}m = m\widehat{\alpha}(I_{\mathcal{A}}) \leq \alpha(I_{\mathcal{A}}^{(m)}) \leq 6r + 4.$$

- We can show the failure of containment $I^{(9)} \not\subseteq I^8$.
- Suppose that $\frac{9}{8} < \frac{m}{r}$ and assume for contradiction that $I_{\mathcal{A}}^{(m)} \not\subseteq I_{\mathcal{A}}^r$.
- Bocci-Harbourne says the failure of containment I^(m)_A ⊈ I^r_A implies the last inequality

$$\frac{11}{2}m = m\widehat{\alpha}(I_{\mathcal{A}}) \leq \alpha(I_{\mathcal{A}}^{(m)}) \leq 6r + 4.$$

Then we obtain the system of inequalities

$$11m-8\leq 12r<\frac{96}{9}m.$$

- We can show the failure of containment $I^{(9)} \not\subseteq I^8$.
- Suppose that $\frac{9}{8} < \frac{m}{r}$ and assume for contradiction that $I_{\mathcal{A}}^{(m)} \not\subseteq I_{\mathcal{A}}^r$.
- Bocci-Harbourne says the failure of containment I^(m)_A ⊈ I^r_A implies the last inequality

$$\frac{11}{2}m = m\widehat{\alpha}(I_{\mathcal{A}}) \leq \alpha(I_{\mathcal{A}}^{(m)}) \leq 6r + 4.$$

• Then we obtain the system of inequalities

$$11m - 8 \le 12r < \frac{96}{9}m.$$

• Finitely many pairs (m, r) satisfy this system.

Proof cont.

 But the finitely many containments actually do hold except for m = 9 and r = 8.

Proof cont.

- But the finitely many containments actually do hold except for m = 9 and r = 8.
- Therefore no such $\frac{m}{r}>\frac{9}{8}$ exists such that $I_{\mathcal{A}}^{(m)} \not\subseteq I_{\mathcal{A}}^r$ and

$$\rho(I_{\mathcal{A}}) = 9/8.$$

Thank you!