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I. Single variable polynomial interpolation
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Example 1
Can we find a polynomial f (x) such that

f (1) = 1, f (2) = −1, f (3) = 2?

Solution

f (x) = 1 · (x − 2)(x − 3)

(1− 2)(1− 3)
− 1 · (x − 1)(x − 3)

(2− 1)(2− 3)
+ 2

(x − 1)(x − 2)

(3− 1)(3− 2)

f (1) = 1 · (1− 2)(1− 3)

(1− 2)(1− 3)
−1 · (1− 1)(1− 3)

(2− 1)(2− 3)
+2 · (1− 1)(1− 2)

(3− 1)(3− 2)
= 1

f (2) = 1· (2− 2)(2− 3)

(1− 2)(1− 3)
−1· (2− 1)(2− 3)

(2− 1)(2− 3)
+2· (2− 1)(2− 2)

(3− 1)(3− 2)
= −1
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Lagrangian interpolation
We are given

x1, . . . , xn in R distinct points

y1, . . . , yn in R arbitrary values

and want to find a polynomial f (x) of degree n − 1 such that

f (xi) = yi

for all 1 ≤ i ≤ n.

Solution

f (x) =
n∑

i=1

yi

n∏
j=1
j ̸=i

x − xj
xi − xj
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Example 1 (again)
Can we find a polynomial f (x) such that

f (1) = 1, f (2) = −1, f (3) = 2?

Does a quadratic polynomial exist that does the above?

f (x) = ax2 + bx + c

The conditions f (1) = 1, f (2) = −1, f (3) = 2 impose the following
linear conditions in a, b, c :

a + b + c = 1 f (1) = 1

4a + 2b + c = −1 f (2) = −1

9a + 3b + c = 2 f (3) = 2
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Example 1 (again)
a + b + c = 1 f (1) = 1

4a + 2b + c = −1 f (2) = −1

9a + 3b + c = 2 f (3) = 2

 1 1 1 1
4 2 1 −1
9 3 1 2

 RREF−−−→

 1 0 0 5/2
0 1 0 −19/2
0 0 1 8


Solution

The quadratic polynomial

f (x) =
5

2
x2 − 19

2
x + 8 =

1

2
(5x2 − 19x + 16)

does the trick.
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System of linear equations
We are given distinct points x1, . . . , xn in R and arbitrary values
y1, . . . , yn in R and want to find a polynomial f (x) of degree n − 1
such that for i = 1, 2, . . . , n we have

f (xi) = yi
Solution

There is a polynomial of degree n − 1

f (x) = a1x
n−1 + a2x

n−2 + . . .+ an−1x + an

whose coefficients are given by the solution set of the linear system
xn−1
1 xn−2

1 xn−3
1 · · · x1 1 y1

xn−1
2 xn−2

2 xn−3
2 · · · x2 1 y2

...
...

...
. . .

...
...

...
xn−1
n xnn − 2 xn−3

n · · · xn 1 yn


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Extended Example 1
Can we find a polynomial f (x) such that

f (1) = 1, f (2) = −1, f (3) = 2 and f ′(3) = 0?
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If f (x) = ax3 + bx2 + cx + d , then f ′(x) = 3ax2 + 2bx + c .

The conditions f (1) = 1, f (2) = −1, f (3) = 2, f ′(3) = 0 impose the
following linear conditions in a, b, c , d :

a + b + c + d = 1 f (1) = 1

8a + 4b + 2c + d = −1 f (2) = −1

27a + 9b + 3c + d = 2 f (3) = 2

27a + 6b + c = 0 f ′(3) = 0


1 1 1 1 1
8 4 2 1 −1
27 9 3 1 2
27 6 1 0 0

 RREF−−−→


1 0 0 0 −11/4
0 1 0 0 19
0 0 1 0 −159/4
0 0 0 1 49/2


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The cubic polynomial

f (x) =
−11

4
x3 − 19x2 − 159

4
x +

49

2

does the trick.
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Example 2
What degree polynomial would have the following conditions

f (1) = 1, f (2) = 2, f (3) = 3,
f ′(1) = 4, f ′(2) = 5, f ′(3) = 6?
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Observation

If there are n conditions

f (ki,j )(xi ,j) = yi ,j

then there is a polynomial f (x) of degree n − 1 that simultaneously
satisfies the n conditions (assuming n bounds {ki ,j}).
The coefficients of f (x) are given a system of linear equations.
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II. Multivariable polynomial interpolation
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A plane curve is the set of points in R2 satisfying

f (x , y) = 0

for some polynomial f (x , y).
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Given a point p = (x , y) and a polynomial f (x , y), then f (p) = 0 iff
p lies on the plane curve f (x , y) = 0.

f (q) = f (1, 0) = 12 + 02 − 1 = 0 ⇒ the point q lies on the circle
f (p) = f (0, 0) = 02 + 02 − 1 ̸= 0 ⇒ the point p does not lie on the

circle
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Example 3

Consider 3 points p1, p2, p3 in the plane. What is the minimum
degree d polynomial f such that f (pi) = 0?

3 collinear points vs. 3 non-collinear points

Problem

In the single-variable case, the position of the points do not matter.
In the multi-variable case, the position of the points do matter.
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Example 4

Any five (general) points determine a unique conic

Let F (x , y) = ax2 + bxy + cy 2 + dx + ey + f . Denote pi = (xi , yi) for
i = 1, 2, 3, 4, 5.

Each point imposes a linear condition on
a, b, c , d , e, f .

x21 x1y1 y 2
1 x1 y1 1

x22 x2y2 y 2
2 x2 y2 1

x23 x3y3 y 2
3 x3 y3 1

x24 x4y4 y 2
4 x4 y4 1

x25 x5y5 y 2
5 x5 y5 1



a
b
c
d
e
f

 =


0
0
0
0
0


Observe that this is a linear system of 5 equations and 6 variables, so
we obtain a non-trivial solution and this solution uniquely determines
F (x , y) = 0.
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Example 4 cont.

Six (general) points do not lie on a conic

An additional point gives an additional linear condition. Therefore
we have the linear system

x21 x1y1 y 2
1 x1 y1 1

x22 x2y2 y 2
2 x2 y2 1

x23 x3y3 y 2
3 x3 y3 1

x24 x4y4 y 2
4 x4 y4 1

x25 x5y5 y 2
5 x5 y5 1

x26 x6y6 y 2
6 x6 y6 1




a
b
c
d
e
f

 =


0
0
0
0
0
0

 .

Since the six points are random enough, the matrix is invertible. By
the Invertible Matrix Theorem the only solution to this system is the
trivial solution. Hence no conic passes through all six points.
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Suppose polynomials of degree d have n coefficients.

If we have fewer than n points, then there is always a plane curve
of degree d passing through the points.

If we have at least n points and the points are sufficiently
general, then there is no plane curve of degree d passing through
the points.

Examples

There is a conic passing through any 5 points.

There is no conic curve passing through 6 general points.

There is a cubic curve passing through any 9 points.

There is no cubic curve passing through 10 general points.
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III. Plane curves with multiplicity
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Example 4
Let f (x , y) = y 2 − x3 − x2 and p = (0, 0).

f (p) = 02 − 03 − 02 = 0

∂f

∂x
= −3x2 − 2x =⇒ ∂f

∂x
(p) = −3(0)2 − 2(0) = 0

∂f

∂y
= 2y =⇒ ∂f

∂y
(p) = 2(0) = 0
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Conclusion

The cubic polynomial f = y 3 − x2 − x2 satisfies

f (p) =
∂f

∂x
(p) =

∂f

∂y
(p) = 0

at p = (0, 0). We say that f has multiplicity 2 at p.

Geometrically, we can “see” that f has multiplicity 2 at p since the
curve f = 0 passes through p twice. We say that p is a double point.
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Example 5

Each double point imposes three conditions (f = ∂f /∂x = ∂f /∂y
= 0) and each simple points imposes one condition (f = 0).

3 · 3 + 5 · 1 = 14 conditions
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Example 5 cont.

A quartic (degree 4) polynomial in two variables x , y has 15
coefficients:

x4, x3y , x3, x2y 2, x2y , x2, xy 3, xy 2, xy , x , y 4, y 3, y 2, y , 1.

Since there are more coefficients (15) than there are conditions (14),
there is a quartic curve that has the prescribed conditions we want.
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Example 6

Two double points p1, p2 impose six(= 2 · 3) conditions

F (p1) =
∂F

∂x
(p1) =

∂F

∂y
(p1) = F (p2) =

∂F

∂x
(p2) =

∂F

∂y
(p2) = 0.

A quadratic polynomial in two variables x , y has six coefficients

F (x , y) = ax2 + bxy + cy 2 + dx + ey + f .

So there should be no solution...right?
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Counterexample to Example 6

Let p1 = (x1, y1) and p2 = (x2, y2). Let the line passing through the
point p1 and p2 be given by L(x , y) = 0. But then

L(x , y)2 = 0

is a conic curve that has multiplicity 2 at the points p1 and p2.

We interpret this as two copies of the same line, stacked on top of
one another.
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Example 7

Five double points impose fifteen(= 5 · 3) conditions.

A quartic polynomial in two variables x , y has fifteen coefficients.

From Example 4, there is a unique conic curve given by

G (x , y) = 0

that passes through the five points. Therefore the quartic curve

G (x , y)2 = 0

has multiplicity 2 at the five points. Similarly we interpret this as two
copies of the same conic, stacked on top of one another.
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These are two instances of the existence of curves when the number
of conditions, given by simple and double points, equals the number
of coefficients.

Alexander–Hirschowitz ’95

These are the only instances of the existence of curves when the
number of conditions, given by simple and double points, equals the
number of coefficients.

SHGH-Conjecture

If the number of conditions a collection of points of arbitrary
multiplicity equals the number of coefficients, then existance of a
curve with these conditions relies on some number of copies of a
curve stacked on top of each other.
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IV. My research
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Questions

Given a set of points p1, . . . , pn in the plane with multiplicities
m1, . . . ,mn, what is the minimal degree d polynomial f such that
f has multiplicity at least mi at pi?

Given points p1, . . . , pn in the plane what is the minimal ratio
d/m for which there is a degree d polynomial f such that f has
multiplicity at least m at each pi?

Problem

These are hard.

How we can alleviate the difficulty of this question?

Consider special configurations of points.

Exploit any symmetries/geometry of the configuration.
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Geometry from reflection groups

Let G = A5 × Z2 be the symmetry group of the icosahedron.
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The group G is generated by the following matrices.−1 0 0
0 1 0
0 0 1

 ,

1 0 0
0 −1 0
0 0 1

 ,
−1

2

ω − 1 ω 1
ω −1 ω − 1
1 ω − 1 −ω

 .

The group G acts naturally on the polynomial ring S = C[x , y , z ].

Example

Let A be the matrix  0 1 0
0 0 1
−1 0 0

 .

Then A acts on S by a linear change of variables
x 7→ y , y 7→ z , z 7→ −x .

For example, A acts on the polynomial x2y − 2xy + 3z as:

A · (x2 − 2xy + 3z) = y 2 − 2yz − 3x
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Question

What polynomials are invariant under the action of G? For what
f ∈ S , does

g · f = f

hold for all g ∈ G?

Notice that since G is the symmetry group of the regular icosahedron,
its vertices are equidistant from the origin. That is, G preserves
distances.

The polynomial ϕ2 = x2 + y 2 + z2 is G -invariant.
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The polynomial ϕ2 = x2 + y 2 + z2 is G -invariant.
There are two other G -invariant polynomials of interest.

ϕ6 = x4y 2+ y 4z2+ x2z4+4ω x2y 2z2− (ω + 1) (x2y 4+ y 2z4+ x4z2),

ϕ10 = x8y 2 + x2z8 + y 8z2 + (3ω − 5)(x2y 8 + x8z2 + y 2z8)+
(3ω − 7)(x6y 4 + x4z6 + y 6z4)− (6ω − 11)(x4y 6 + x6z4 + y 4z6)−
(30ω − 40)(x6y 2z2 + x2y 6z2 + x2y 2z6) + (45ω − 60)(x2y 4z4 +
x4y 2z4 + x4y 4z2).

Lemma

Every G -invariant polynomial can be written as a homogeneous
polynomial in ϕ2, ϕ6 and ϕ10.

Example

ϕ2
2ϕ6 − ϕ10 is G -invariant.
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There are double, triple and quintuple points of the line configuration.

Lemma

Let f = 0 be a curve defined by a G -invariant polynomial f .
If the curve passes through a k-point, then the curve passes through
all k-points with multiplicity at least 2.
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Lemma

Let f = 0 be a curve defined by a G -invariant polynomial f .
If the curve passes through a k-point, then the curve passes through
all k-points with multiplicity at least 2.

Significance

There are 15 double points in the configuration.

A double point imposes 3 linear conditions.

These give 45 linear conditions to satisfy.

Lemma states if one linear condition is satisfied, then the
remaining 44 linear conditions are satisfied as well.
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The polynomials ϕ2, ϕ6, ϕ10 are used to find curves that have
multiplicities at some points of our initial configuration.

(d ,m) = (6, 2) (d ,m) = (12, 5)
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Initial question

What is the minimal ratio d/m of a polynomial of degree d with
multiplicity m at the 31 points?

Calvo ’22

The minimal ratio is d/m = 11/2.
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Thank you!
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