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1. Introduction

Section 2 is a brief revisit to the familiar geometry of P1(C) with a new perspective
to fit the language used in later sections. Sections 3 and 4 introduces ideas leading
up to the definition of n-pointed curves. Sections 5 and 6 try to fix whats “wrong”
with the definitions presented in 3 and 4. Lastly, we tie into what we have seen into
the larger world of Moduli spaces.

2. Projective Complex Line

We denote P1(C) to be the projective complex line, which can be thought of as the
familiar Riemann Sphere. The automorphisms of P1(C) form the group PGL2(C),
invertible 2× 2 matrices over C with identification of two matrices given by one is a
constant factor of the other.

Recall that PGL2(C) acts 3-transitively on P1(C). Let p = (p1, p2, p3, p4) be an
ordered set of points in P1(C). Then there exists an automorphism φp which maps
p1 to 0, p2 to 1 and p3 to ∞. This map can be written as

φp(z) =
(z − p1)(p2 − p3)
(z − p3)(p2 − p1)

Let λ(p) be the image of p4 under φp. Observe that the first three points of p deter-
mines φp. We call a point p = (p1, p2, p3, p4) a quadruplet. Quadruplets naturally
live in P1(C) × P1(C) × P1(C) × P1(C). Let Q be the set of all quadruplets that do
not lie on the diagonals. In other words, this condition forces pi to all be distinct.
Then we can neatly describe the map λ : Q→ P1(C) defined by λ(p) = φp(p4). Since
p4 cannot be equal to p1, p2 or p3, the image of λ is P1(C)\{0, 1,∞}.

We can now ramp things up. Two quadruplets p, p′ ∈ Q are projectively equiv-
alent if there exists an automorphism φ ∈ P1(C) such that φ(pi) = p′i. As we have
mentioned before, PGL2(C) acts only 3-transitively on P1(C). Thus, not any pair of
quadruplets are projectively equivalent. It stands to investigate how we can describe
partition classes of P1(C)× P1(C)× P1(C)× P1(C) we obtain from projective equiv-
alence. An initial observation is that such quadruplets are projectively equivalent if
and only if λ(p) = λ(p′).

We can reformulate λ(p) = λ(p′) as p = (p1, p2, p3, p4) is projective equivalent to
p′ = (0, 1,∞, q) for a q ∈ P1(C)\{0, 1,∞}. Since p1, p2 and p3 determine φ as men-
tioned above, the mapping φ(p4) = q was determined. So in fact, this value q is
unique. In conclusion, we culminate these preliminary ideas to state the following
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proposition.

Proposition 2.1 The set of equivalence classes of Q is bijective to P1(C)\{0, 1,∞}.

3. Universal Families

A family is a variety B, paired with a projection map π : B × P1(C) → B and
disjoint maps (also called sections) σi : B → B×P1(C) for i = 1, 2, 3, 4, as displayed
in the diagram below. The choice of 4 sections was selected to remain faithful to the
context presented in section 2, although we will expand upon this choice later.

B × P1(C)

B

π σi

As it turns out, Q is a variety. A family over Q can be given by the four sections
σi(p) = p × pi. The importance of these sections is that σi(p) for p ∈ Q is precisely
the i-th coordinate of p. Since every p ∈ Q is projectively equivalent to (0, 1,∞, q),
we have

σ1(p) = Q× 0

σ2(p) = Q× 1

σ3(p) = Q×∞

σ4(p) = Q× q
We call these families universal because they carry the universal property via

taking the pull-back of the family in question.

In Proposition 2.1, we mentioned these are the same as far as set theory is con-
cerned...but we can do much more. Let us denote the equivalence classes of Q as
M0,4. The index 0 refers to the genus of P1(C). The index 4 refers to the number of
‘points in question’, which in our case refers to our quadruplets. We will later define
these points as marks. The set P1(C)\{0, 1,∞} is a variety in P1(C). Imposing a
universal family on M0,4 will allow us to say that M0,4 is in natural bijection with
P1(C)\{0, 1,∞}. In this context, ‘natural’ refers to an adoption of a geometric struc-
ture to a collection of equivalence classes.

Two families (B, σi)
4
i=1 and (B, σ′i)

4
i=1 are equivalent if there exists an automor-

phism φ : B × P1(C)→ B × P1(C) such that π = φ ◦ π′ and σ′i = φ ◦ σi.

Proposition 3.1 Two families σ : B → Q and σ′ : B → Q are equivalent if and only
if λ ◦ σ = λ ◦ σ′.

Proof. Suppose λ ◦ σ = λ ◦ σ′ for any p ∈ Q. Then the quadruplets σ(p) and
σ′(p) are projectively equivalent. That is, there exists an automorphism φ that takes
pi 7→ p′i where σ(p) = (p1, p2, p3, p4) to σ(p′) = (p′1, p

′
2, p
′
3, p
′
4). Thus these families are

projectively equivalent. �
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4. n-pointed curves

An n-pointed smooth rational curve (C, p1, ..., pn) is a projective smooth ratio-
nal curve C with p1, ..., pn choice of n distinct points we call marks. An example of
such a curve is M0,4, where n = 4. An isomorphism of n-pointed rational curves C
and C ′ is an isomorphism ϕ : C → C ′ which respects the order of marks, ϕ(pi) = (p′i)
for i = 1, ....n.

A family of n-pointed smooth rational curves is a map π : X → B and n dis-
joint sections σi : B → X such that for any b ∈ B, the fiber of π−1(b) is a projective
smooth rational curve, and for each i = 1, ..., n, σi(b) gives the n marks of the fiber.

Example 4.1 Let n = 3. This reduces to using the fact that PGL2(C) acts 3-
transitively on P1(C). That is, any (C, p1, p2, p3) is isomorphic to (P1(C), 0, 1,∞).
Hence,there is only one isomorphism class and M0,3 is a single point.

Example 4.2 Let n = 4. We previously discussed that any curve C with 4 distinct
marks (C, p1, p2, p3, p4) is isomorphic to (P1(C), 0, 1,∞, q) for q ∈ P1(C)\{0, 1,∞}.
Just as with Q, we can impose a universal family on M0,4 which we will call U0,4

Just as we had three constant sections for the family over Q, we have three con-
stant sections τ1(q) = M0,4 × 0, τ2(q) = M0,4 × 1 and τ3(q) = M0,4 × {∞}. Given
whatever point p ∈M0,4, τi(q) will give us the i-th marked point of q, which is always
either 0, 1 or ∞ for i = 1, 2, 3. Let τ4(q) =M0,4 × q. We refer to τ4 as the ‘diagonal’
section. Since q 6= 0, 1 or ∞, we see that these sections are disjoint. The fiber of a
point q ∈ M0,4, denoted Uq, is a copy of P1(C) with four points “marked”, one point
for each section.

τ1

τ2

τ3

τ4
P1(C)

0

1

∞

M0,4

0 1 ∞

Uq

q

Example 4.3 For n ≥ 4, we can construct M0,n from n − 3 products of M0,4 and
removing the diagonals. As expected, its the first three sections of its universal family
U0,n are the constant sections for 0, 1,∞. The remaining sections are induced in such
a way that π ◦ τi = id|M0,n×P1(C).

Since P1(C)\{0, 1,∞} is not compact, we cannot expect M0,n to be compact.
Namely, the property of compactness that goes wrong is the closedness of limits.
The following example highlights this issue.
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Example 4.4 Consider the two family of quadruplets

Ct = (0, 1,∞, t) Dt = (0, t−1,∞, 1)

The cross ratio of Ct and Dt are

λ(Ct) =
(−∞)t

t−∞
, λ(Dt) =

t−1 −∞
(1−∞)(t−1)

Since the cross ratios are inverses of one another, then they obtain the same cross ra-
tios and thus are isomorphic families. However as we let t→ 0, C0 gives p1 = p4 = 0
while D0 gives p2 = p3 = ∞. Thus while projective equivalence allowed us to con-
structM0,n, it simultaneously brings with it an issue that invalidates compactification
ofM0,n in the obvious way (that is, allow marked points to coincide). We take a brief
pause on this discussion to introduce a tool that helps fix this issue.

5. Trees and Stability of n-pointed curves

A tree of projective lines is a connected curve composed of twigs, irreducible
components of a tree, satisfying the following:

(1) Each twig is isomorphic to a projective line P1(C).
(2) Each node, a point of intersection of twigs, is counted with multiplicity 2.
(3) There are no closed circuits.

For convenience, we will simply just say ‘tree’. A point of C is said to be special if
it is either a mark or node.

Let n ≥ 3. An n-pointed rational curve C is said to be stable if C is a tree such
that

(4) Each mark is a smooth point of C.
(5) Each twig has at least three special points.

These trees should reminisce of graphs (vertices and edges). We could have actu-
ally defined stability in terms of graph morphisms (incidence-preserving maps). An
automorphism of (C, p1, ..., pn) is an automorphism φ : C → C that fixes each mark.

Proposition 5.2 A n-pointed curve C is stable if and only if there are no non-trivial
automorphism of C.

Proof. (⇒) Let C be a a stable n-pointed curve. Let φ be an automorphism of C.
Since φ fixes each mark, then it must also map each marked twig to itself by definition.
If φ fixes nodes, then we are done. We use an induction argument.

If a twig has 1 node, then it must have at least two marks by the stability of C.
Since this node is an element of two twigs, then it must be that this node is fixed
(since φ maps twigs onto itself). Thus φ fixes all special points of a twig. Since every
twig has at least three of these, the automorphism must be trivial (since PGL2(C)
acts 3-transitively on P1(C)).
(⇐) Let φ be the only (hence trivial) automorphism of C. There does not exist a
twig of just one special point, or else there would be a non-trivial automorphism.
Similarly for a twig with only two special points. So every twig must have at least
three special points and C is stable. �



n-POINTED CURVES AND MODULI SPACES 5

6. Compactification of M0,n

In Example 4.4, we saw that our definition of projective equivalence causes some
issues for compactification. Restoring the three missing points (0, 1,∞) so that the
compactification of M0,4 is P1(C) is not enough. In the diagram of Example 4.2 (also
displayed below), restoring the missing points would also disrupt the disjointness of
our sections. That is, if we were to consider Uq, we would get that q = 0 is marked
twice (since τ1 and τ4 meet at that point).

τ1

τ2

τ3

τ4
P1(C)

0

1

∞

M0,4

0 1 ∞

Uq

q

To compactifyM0,4, we use the geometric operation on a variety known as a blow-
up. Essentially, blowing up means replacing a particular point with a copy of P1(C).
We blow-up at points that disrupt the structure we are hoping to preserve. When we
blow-up, its crucial to investigate what becomes of the universal family.

Thus restore the bad points into M0,4 to obtain a copy of P1(C)×P1(C), a variety
we are comfortable working with. We blow-up P1(C)×P1(C) at the points (0, 0), (1, 1)
and (∞,∞). At (0, 0), we insert a copy of P1(C). Since we are only messing around
with these three points, the fibers of π remain the same as before. That is, for π−1(q)
is a copy of P1(C) with 0, 1,∞ and q as marked points for q 6= 0, 1,∞.

In particular, for q = 0, π−1(0) is two copies of P1(C) intersecting at a single point.
The new copy of P1(C) obtained from blowing up is called the exceptional divisor
E0 of the point 0. Denote π−1(0) by the union of U0 and E0. We want to identify the
marked points on this fiber. Since 1 and ∞ are far enough away from the blow-up, 1
and∞ are marked points on U0. In other words, the sections τ2 and τ3 remain disjoint
on U0 after blowing up. But they do not intersect E0 because of the uniqueness of
the intersection of E0 and U0. In fact, τ1 and τ4 do intersect E0 but now they are
disjoint in the blow-up. Also including the point of intersection, we have that U0 and
E0 are both twigs since they have three special points! Similar scenarios occur for
the fibers at q = 1,∞. We denote the compactification of M0,4 as M0,4.

The idea of how blow-ups solve our compactness problem is that as two distinct
marks tend towards each other, a new P1(C) is formed between them. This new P1(C)
is in fact a twig, since it carries the two distinct marks and the point of intersection
of original P1(C) that contained the marks.
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Example 6.1 We continue Example 4.4. We had the following set up: Consider
families

Ct = (0, 1,∞, t), Dt = (0, t−1,∞, 1)
The cross ratios of Ct and Dt are

λ(Ct) =
(−∞)t

t−∞
, λ(Dt) =

t−1 −∞
(1−∞)(t−1)

We saw that they limit towards different values as t → 0 despite the families being
projectively equivalent. We employ the diagrams of corresponding trees, for a given
t value, to make the punchline pictorial.

0 1 ∞ t

0 1∞t−1

projectively
equivalent

blow up

Ct

Dt

0

1 ∞t

∞

01t−1

isomorphic
4-pointed curve

As t tends toward 0, p4 converges to p1 in Ct. In Dt, p2 converges to p3. Blow-
ing up M0,4 makes it so that the convergence is halted once the exceptional divisor
comes into play. Then, p4 and p1 remain distinct (p2 and p3 respectively) and so the
exceptional divisor becomes a twig of the curve. Since both twigs have at least three
special points, these are stable. In fact, Ct and Dt in the blow-up are isomorphic as
stable 4-pointed curves.

From the last paragraph, it gives us some intuition behind the following remark by
Kock: "In particular, the points of the variety ofM0,n are in bijective correspondence
with the set of isomorphism classes of stable n−pointed rational curves.

For a given t0, Ct0 and Dt0 are projectively equivalent. Thus we want to consider
them the “same” in M0,4, but as we have hammered down enough, issues arise. The
want becomes a reality when we compactify and obtain M0,4. The curves Ct0 and
Dt0 become isomorphic 4-pointed curves. Just as in M0,4 we consider isomorphism
classes of quadruplets, we consider isomorphism classes of 4-pointed curves in M0,4.

7. Moduli Spaces

What initially began as a project on Moduli Space had to be renamed to be “n-
pointed curves and Moduli Spaces”. This begs the question, what does n−pointed
rational curves have to do with Moduli Spaces. Or rather, what is a Moduli space
and what do n-pointed rational curves have to do with them?

A moduli problem consists
◦ a class of objects P in a category C
◦ a family of objects over a base variety B and a notion of an equivalence of

families
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A Moduli Space is a spaceM that classifies the equivalence classes of the objects
P in the same category C. More precisely,

◦ elements of M are in bijection with the equivalence classes of objects P in C
◦ For any family over a variety B, we obtain a map B →M

In essence, a Moduli space parameterizes equivalance classes. It is a tool that al-
lows us to see how a space “moves” in regards to a particular property (or class). This
paper focused on the very neat and simple case of where the objects were n-tuples
of points on P1(C), the equivalence of such objects being projective equivalence and
our families being the sections σi.

The incredible aspect of this construction is that it dubbed the term ‘space’ in its
name. It inherits a geometric structure from an algebraic variety. From this, we are
able to talk about the compactification of the space and inquire what does compact-
ification do to the equivalence relation and parameters that laid the groundwork for
the construction of the space. It tinkers some structure but we were able to patch it
up.

In particular, we only considered spaces of genus 0. The following theorem by Finn
Knudsen gives us that we are able to construct compactifications of M0,n:
Theorem 7.1 For each n ≥ 3, there is a smooth projective variety M0,n which is a
fine moduli space for stable n-pointed rational curves and contains M0,n as a dense
open subset.

Moving forward, the marks I want to hit regarding Moduli Spaces are:
◦ Verify the smoothness of M0,n

◦ Learn what changes in genus 1
◦ Be able to identify the schemes floating around when we talk about Moduli

spaces
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